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Background. Single-dose baloxavir rapidly reduces influenza virus titers and symptoms in patients with uncomplicated influ-
enza, but viruses with reduced in vitro susceptibility due to amino acid substitutions at position 38 of polymerase acidic protein (PA/
I38X) sometimes emerge.

Methods. We evaluated the kinetics, risk factors, and effects on clinical and virologic outcomes of emergence of PA/I38X-
substituted viruses.

Results. Viruses containing PA/I38X substitutions were identified 3–9 days after baloxavir treatment in 9.7% (36/370) of patients, 
of whom 85.3% had transient virus titer rises. Median time to sustained cessation of infectious virus detection was 192, 48, and 96 
hours in the baloxavir recipients with PA/I38X-substituted viruses, without PA/I38X-substituted viruses, and placebo recipients, 
respectively. The corresponding median times to alleviation of symptoms were 63.1, 51.0, and 80.2 hours, respectively. After day 5, 
symptom increases occurred in 11.5%, 8.0%, and 13.0%, respectively, and in 8.9% of oseltamivir recipients. Variant virus emergence 
was associated with lower baseline neutralizing antibody titers.

Conclusions. The emergence of viruses with PA/I38X substitutions following baloxavir treatment was associated with tran-
sient rises in infectious virus titers, prolongation of virus detectability, initial delay in symptom alleviation, and uncommonly with 
symptom rebound. The potential transmissibility of PA/I38X-substituted viruses requires careful study.

Clinical Trial Registration. NCT02954354.
Keywords.  antiviral susceptibility; baloxavir marboxil; cap-dependent endonuclease; influenza; polymerase acidic protein.

RNA viruses, such as influenza, evolve rapidly due primarily 
to the error-prone nature of viral RNA-dependent RNA poly-
merase (RdRpol) [1–4]. The resulting genetic diversity in cir-
culating influenza viruses can change many functional aspects 
including antigenicity, pathogenicity, transmissibility, or sus-
ceptibility to antivirals [1]. Seasonal influenza viruses resistant 
to the adamantanes circulate widely [5, 6], and therefore the 
adamantanes are no longer recommended for the influenza 
treatment [5, 7]. The most widely used anti-influenza drugs are 
neuraminidase inhibitors (NAIs), particularly oseltamivir [8]. 
Oseltamivir-resistant seasonal A(H1N1) viruses, containing 
an amino acid substitution at position 275 in the NA protein 

(NA/H275Y) [9], emerged in 2007 and circulated worldwide 
in 2008–2009, until being replaced by the 2009 A(H1N1) pan-
demic virus [9, 10]. Although the NA/H275Y substitution was 
previously shown to reduce virus transmissibility [11–13], ena-
bling secondary NA substitutions in the 2007 A(H1N1) viruses 
were responsible for restoring fitness in the viruses, such that 
they were able to circulate in the absence of selective drug 
pressure [14, 15], and replaced oseltamivir-susceptible sea-
sonal A(H1N1) viruses [16–18]. Since that time, the frequency 
of NAI-resistant A(H1N1)pdm09 viruses circulating in the 
community has remained below 4% [19], but there is concern 
about the potential for further oseltamivir-resistance emer-
gence. Furthermore, outbreaks and pandemics by avian and 
other zoonotic influenza viruses are significant public health 
concerns. Therefore, additional anti-influenza drugs with novel 
mechanisms of action and potent antiviral effect against wide 
ranges of influenza virus are needed [20].

Cap-dependent endonuclease (CEN) is part of the poly-
merase acidic (PA) protein within the RdRpol complex of influ-
enza A and B viruses. Baloxavir marboxil (formerly S-033188; 
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hereafter baloxavir) is a prodrug of baloxavir acid (BXA), a CEN 
inhibitor approved in Japan and the United States for the treat-
ment of influenza virus type A and B infections [21], following 
randomized trials in otherwise healthy adults and adolescents 
[22, 23]. In the phase 3 trial (CAPSTONE-1), a single oral dose 
of baloxavir rapidly reduced infectious virus titers and signif-
icantly reduced the time to alleviation of symptoms (TTAS) 
compared with placebo [22].

A preclinical study [24] determined that sequential passage 
of influenza A viruses in vitro selected variant viruses harboring 
amino acid substitutions from isoleucine (I) to threonine (T), 
and clinical studies [22] identified substitution to threonine 
(T), methionine (M), or phenylalanine (F) at position 38 of the 
PA (PA/I38X), within the active site of CEN [25–27]. In vitro 
characterization showed that laboratory strains with PA/I38X 
substitutions have reduced susceptibility to BXA [24], but also 
reduced endonuclease activity and impaired replicative fitness 
in cell culture [28, 29]. PA/I38X substitutions increased the 
BXA concentration achieving 50% inhibition of plaque forma-
tion (EC50) of type A by 30- to 50-fold and type B viruses by 
7-fold, with the I38T substitution having the largest effect [29]. 
Notably, PA/I38X-substituted viruses remain fully susceptible 
to oseltamivir [29].

During posttreatment monitoring of the phase 2 and 3 trials, 
PA/I38X-substituted viruses were identified in 2.2%–9.7% of 
baloxavir-treated patients [22]. Limited analyses of the phase 
3 data found that baloxavir recipients with emergence of PA/
I38X-substituted viruses had prolonged detectability of infec-
tious virus and of TTAS compared to those who did not (me-
dian, 63.1 hours versus 49.6 hours). However, the impact of the 
emergence of PA/I38X-substituted viruses on the clinical and 
virologic effectiveness of baloxavir, as well as the susceptibility 
of variant clinical isolates, remain to be fully characterized. The 
aims of our post hoc analyses were to evaluate (1) the relation-
ship between emergence of PA/I38X-substituted viruses and 
clinical and virologic outcomes in baloxavir-treated patients 
with uncomplicated influenza, (2) the kinetics of their emer-
gence, (3) the changes in phenotypic susceptibility conferred by 
the PA/I38X substitutions in clinical isolates, and (4) the pos-
sible risk factors associated with the emergence of viruses with 
PAI38X substitutions.

MATERIALS AND METHODS

Study Design

CAPSTONE-1 was a phase 3, double-blind, placebo- and ac-
tive comparator-controlled, randomized trial conducted in 
Japan and the US between in 2016/17 influenza season [22] 
(ClinicalTrials.gov NCT02954354). The methods, including 
sample collection, virologic analyses, and primary results of 
the trial have been reported [22]. Next-generation sequencing 
(NGS) of swabs and phenotypic assays of virus susceptibility 
were conducted in selected patients (Supplementary Text).

Risk Factors and Relationship to Drug Exposure

The possible enrollment risk factors assessed for emergence of 
PA/I38X-substituted viruses included sex, body weight, com-
posite symptom score, body temperature, neutralizing antibody 
titer, infectious virus titer, time to treatment from symptom 
onset, food before or after administration, and medical history. 
Age and influenza vaccination were excluded because they had 
statistically significant associations with baseline neutralizing 
antibody titer. Region was excluded because it had a statistically 
significant association with time to treatment from symptom 
onset (Supplementary Table 1).

Plasma samples were taken on days 2 and 5, and when pos-
sible on days 1 (0.5 to 4 hours postdose), 3, and 15. The BXA 
concentrations at 24 hours (C24; from 20 to 28 hours postdose) 
and 72 hours postdose (C72) and area under the curve (AUC) 
were used for the assessments. C72 and AUC were estimated by 
a Bayesian approach based on the population pharmacokinetic 
model [30, 31].

Outcomes and Statistical Analyses

The primary efficacy outcome was the TTAS [22]. Also, we 
examined the time to alleviation of fever, symptoms score over 
time, and the proportions of participants who reached the alle-
viation endpoint but then had recurrence of at least 1 symptom 
self-rated as moderate (score = 2) or greater in intensity. The 
virology outcomes were the time to sustained cessation of infec-
tious virus detection (time between the start of treatment and 
when virus titer remained below the detection limit on all sub-
sequent sampling time points).

Efficacy outcomes were analyzed in the intention-to-treat 
infected population, defined as randomized patients with in-
fluenza confirmed by reverse transcription polymerase chain 
reaction (RT-PCR) on day 1, who received study drug. In our 
post hoc analyses, baloxavir recipients were divided into 2 
subgroups: those with and those without detectable PA/I38X-
substituted viruses postdose. For the TTAS and time to resolu-
tion of fever, median durations with 95% confidence intervals 
(CI) were calculated, and Kaplan–Meier curves were plotted. 
Statistical comparison between baloxavir- and placebo-treated 
groups was performed using generalized Wilcoxon test with 
stratification factors (baseline composite symptom score and 
region).

For patients infected with A(H3N2) virus, risk factors as-
sociated with emergence of PA/I38X-substituted viruses were 
identified using a logistic regression model.

All post hoc analyses were performed using SAS Version 9.2.

RESULTS

Treatment-Emergent PA/I38X-Substituted Viruses

No PA/I38X substitutions were observed in viruses at baseline 
or from placebo-treated patients (n  =  95). Of 456 baloxavir-
treated, influenza-infected patients, 370 (81.1%) had paired 
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baseline and follow-up RT-PCR–positive samples evaluable 
for Sanger sequencing [22]. Among these patients, PA/I38X-
substituted viruses were observed in 36, representing 7.9% of 
all baloxavir-treated, influenza-infected patients and 9.7% of 
those with paired sequence data. Those with substituted viruses 
included 35 with A(H3N2) infection (PA/I38T [n  =  30], PA/
I38T/I mixture [n = 2], PA/I38T/I/M mixture [n = 2], and PA/
I38I/M mixture [n = 1]), and 1 coinfection with A(H3N2) and 
type B (PA/I38T/I mixture in both viruses) (Supplementary 
Table 2).

BXA susceptibility testing of 5 pairs of isolates determined 
that the range of BXA EC50 values was 0.31–0.69 ng/mL in the 
pretreatment (PA/I38) and 36–63 ng/mL in the posttreatment 
samples (PA/I38T), while the favipiravir susceptibility of PA/
I38T-substituted viruses remained unchanged (Table 1 and 
Supplementary Figure 1).

For patients infected with A(H3N2), the last evaluable posi-
tive sample containing PA/I38X-substituted viruses was on day 
4 (1 case), 5 (27 cases), 6 (2 cases), and 9 (5 cases). For 1 patient 
with A(H3N2) and type B coinfection, the last evaluable positive 
samples containing PA/I38X-substituted viruses were on days 3 
(A(H3N2)) and 6 (type B). The mean (SD) decline of infectious 
viral titer from baseline to day 2 was −5.01 (1.65) log10 TCID50/
mL in baloxavir recipients with PA/I38X-substituted viruses 
and −4.60 (1.97) log10TCID50/mL in those without, compared 
to −1.19 (2.43) log10TCID50/mL in placebo recipients (TCID50 : 
50% tissue culture infectious dose).

To more precisely assess the timing when PA/I38X-substituted 
viruses first emerged, an analysis by NGS was conducted on 
samples collected on multiple consecutive days from 7 patients 
with PA/I38X-substituted viruses (Supplementary Figure 2). In 
the pretreatment baseline samples, no PA/I38X substitutions 
were detected (Figure 1A). PA/I38T substitutions were found to 

have emerged as early as day 3 in 2 patients; in 2 other patients 
the variant viruses emerged as a mixed viral population by day 4; 
and in 3 patients variant viruses emerged by day 5 (Figure 1A). 
The PA/I38T-substituted viruses became the dominant pop-
ulation in all 7 patients and in each the timing of PA/I38T-
substituted virus emergence corresponded with an increase in 
viral titers, which in most cases had been below infectivity assay 
detection limits for at least 1 day prior to the emergence of var-
iant viruses (Figure 1B). No obvious differences in plasma BXA 
concentrations were noted in these 7 patients, although both 
with day 3 emergence had relatively lower concentrations over 
time (Figure 1C).

Relationship of Variant Viruses Emergence to Cessation of Viral Shedding

In baloxavir recipients with paired sequence data, the me-
dian time to sustained cessation of infectious virus detection 
was 192 hours (95% CI, 168.0–192.0) for those with PA/I38X-
substituted viruses (n  =  34) and 48 hours (CI not estimated) 
for those without substituted viruses (n = 325), compared with 
96 hours (95% CI, 96.0–120.0) for placebo recipients (n = 209). 
In 85.3% of the baloxavir-treated subgroup with PA/I38X-
substituted viruses, infectious virus titer increased transiently, 
particularly from days 3 to 6 (Figure 2). The increases were as 
high as 5.5 log10TCID50/mL in some cases, but remained low 
(ie, <2.0 log10TCID50/mL) in most. The mean (SD)  viral titer 
on day 5 in patients with PA/I38X-substituted viruses was 2.33 
log10TCID50/mL (1.20) compared with 1.13 log10TCID50/mL 
(1.05) for placebo patients. On day 5, infectious virus was still 
detectable in 27/30 (90.0%) of baloxavir-treated patients with 
PA/I38X-substituted viruses, compared to 26/313 (8.3%) of 
baloxavir-treated patients without PA/I38X-substituted viruses, 
57/192 (29.7%) of patients receiving placebo, and 70/336 
(20.8%) of patients receiving oseltamivir (20 to 64 years of age). 

Table 1. Susceptibility of Influenza PA/I38T-Substituted Viruses Propagated From Clinical Samples to Baloxavir Acid and Favipiravir

Patient ID
Pre/Post Baloxavir Sample  
(PA/38 Amino Acid)

Baloxavir Acid Favipiravir

Mean EC50, ng/mL (SD) Fold Change Mean EC50 ng/mL (SD) Fold Change

186102 Pre (WT) 0.46 (0.28) NA 3000 (1100) NA

 Post (PA/I38T) 63a 136 3600a 1.2

253104 Pre (WT) 0.69 (0.32) NA 2900 (510) NA

 Post (PA/I38T) 53a 77 3800b 1.3

297105 Pre (WT) 0.56 (0.35) NA 2200 (870) NA

 Post (PA/I38T) 36 (15) 65 2900 (1300) 1.3

339111 Pre (WT) 0.31 (0.12) NA 2200 (720) NA

 Post (PA/I38T) 49 (22) 155 2500 (930) 1.1

344103 Pre (WT) 0.39 (0.06) NA 1700 (420) NA

 Post (PA/I38T) 36 (11) 93 2400 (1100) 1.4

Data represent mean and SD of 3 independent experiments, each performed in duplicate unless otherwise indicated. Fold change was calculated by dividing the mean EC50 of the post 
sample by the mean EC50 of the cognate pre sample.

Abbreviations: EC50, concentration achieving 50% inhibition of plaque formation; I, isoleucine; ID, identity; NA, not applicable; PA/38, position 38 of virus polymerase acidic protein; T, thre-
onine; WT, wild type.
aMean of 1 experiment performed in duplicate. 
bValue of a single replicate from a single experiment.
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On day 9, infectious virus remained detectable in 5/34 (14.7%) 
of baloxavir, with PA/I38X-substituted viruses, 6/309 (1.9%) of 
baloxavir, without PA/I38X-substituted viruses, 9/197 (4.6%) of 
placebo, and 11/340 (20.8%) of oseltamivir.

Relationship of Variant Viruses Emergence to Clinical Outcomes

Overall, the TTAS in baloxavir recipients who had paired 
sequence data was significantly shorter than those re-
ceiving placebo treatment (difference, −26.8 hours, P < .001; 
Supplementary Table 3). The median TTAS in the baloxavir-
treated subgroup with PA/I38X-substituted viruses (63.1 
hours; 95% CI, 52.2–87.7) was 12.0 hours longer than in the 
baloxavir-treated subgroup without PA/I38X-substituted 
viruses (51.0 hours; 95% CI, 46.0–56.0), but 17.2 hours 
shorter than in the placebo group (80.2 hours; 95% CI, 72.6–
87.1) (Figure 3). The median TTAS in the oseltamivir group 
(20 to 64 years of age) was 53.8 hours (95% CI, 50.2–56.4) 
[22]. Differences in the proportions with symptom allevi-
ation between the baloxavir-treated subgroups began after 
24 hours, but after approximately 60 hours the proportions 
of unalleviated patients were similar between baloxavir-
treated patients with or without PA/I38X-substituted viruses 
(Figure 3). No significant differences in symptom scores 
over time were found between the baloxavir subgroups, 
and no late increases in score were noted in those with 

PA/I38X-substituted viruses (Figure 4). The proportion 
of patients who had symptom alleviation before day 5 and 
subsequently experienced increased influenza symptoms 
after day 5 was similar across the baloxavir subgroup with 
PA/I38X-substituted viruses (3/26; 11.5%), baloxavir sub-
group without PA/I38X-substituted viruses (20/249; 8.0%), 
placebo group (19/146; 13.0%), and oseltamivir group (20 
to 64  years of age) (26/291; 8.9%) (Supplementary Table 4 
and Table 5). The corresponding median durations of fever 
were 31.0 hours (95% CI, 23.8–33.0), 24.4 hours (95% CI, 
22.1–26.5), 42.0 hours (95% CI, 37.4–44.6), and 24.0 hours 
(95% CI, 22.1–25.9), respectively (Supplementary Figure 3 
and Supplementary Tables 6–8).

Risk Factors for Emergence

The distribution of baseline demographic and other characteristics 
in baloxavir-treated patients with or without PA/I38X-substituted 
viruses are shown in Table 2. A  greater proportion of baloxavir-
treated patients from Japan (33/266; 12.4%) had PA/I38X-
substituted viruses compared with patients from the United States 
(2/61; 3.3%), and a greater proportion of baloxavir-treated patients 
with low neutralizing antibody titer had emergence of PA/I38X-
substituted viruses compared with patients with high antibody titer. 
Multivariate analysis identified a statistically significant association 
between baseline neutralizing virus antibody titer and emergence of 
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Figure 1. Proportion of variant viruses with PA/I38X substitutions, viral titer and plasma BXA concentration in the swab samples from selected patients. Time courses of % 
proportion of PA/I38X-substituted viruses in the swabs (A), viral titer (log10TCID50/mL) in the swabs (B), and BXA concentration in plasma (ng/mL) after day 2 (C) are shown. The 
patient identity number is indicated above. A threshold frequency of >1% was adopted for calling variant viruses in next generation sequencing analysis. The lower limit of 
quantification of viral titer was set at 0.7 log10TCID50. Abbreviations: BXA, baloxavir acid; PA/I38T, isoleucine substituted by threonine at position 38 of virus polymerase acidic 
protein; PA/I38M, isoleucine substituted by methionine at position 38 of virus polymerase acidic protein; WT, wild-type virus; ND, below quantitation limit of 2.18 log10RNA 
copies/mL; NA, not applicable; TCID50, 50% tissue culture infectious dose.
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PA/I38X-substituted viruses. However, no significant associations 
were found with other factors (Table 3). Although the C24 and 
extrapolated AUC and C72 in baloxavir recipients were numerically 
higher in the Japanese subgroup compared to the non-Japanese 
subgroup, the baloxavir subgroups with and without PA/I38X-
substituted viruses showed comparable BXA exposures within the 
Japanese or American subgroups (Supplementary Figure 4).

DISCUSSION

In this phase 3 randomized, controlled trial of baloxavir 
in otherwise healthy adults and adolescents, we detected 
treatment-emergent PA/I38X-substituted viruses in 7.9% of all 
baloxavir-treated, influenza-infected patients, including 9.7% 
of those with paired sequence data and 10.9% of those with 
A(H3N2) infection. Emergence of variant viruses occurred as 
early as day 3 and was associated with transient rises in infec-
tious virus titers and prolongation of virus detectability. PA/
I38X-substituted viruses emergence was also associated with 
an impact on illness resolution in uncomplicated influenza. We 
found an initial slowing of illness resolution in those with subse-
quent detection of PA/I38X-substituted viruses. The initial delay 
in alleviation of symptoms in the baloxavir subgroup with PA/

I38X-substituted viruses was associated with a 12-hour longer 
TTAS compared to the subgroup without PA/I38X-substituted 
viruses. However, symptom alleviation from 60 hours (2.5 days) 
onwards after baloxavir treatment was comparable, as were in-
fluenza symptom scores over time for the 2 subgroups (Figure 
4). Also, the proportion of patients with recurrence of influ-
enza symptoms or fever after reaching the TTAS showed no 
significant differences across the treatment groups. Of note, 
the initial delay in illness alleviation occurred before the PA/
I38X-substituted viruses and associated increases in viral 
titers rises were detected. In comparison, prior observations 
in oseltamivir-treated adult and pediatric outpatients with 
uncomplicated influenza found that those with emergence of 
oseltamivir-resistant variant viruses, mostly children, had pro-
longation of viral RNA detectability although illness duration 
was not longer compared to those without emergence of such 
variants [32, 33].

The reasons why alleviation of influenza symptoms was ini-
tially delayed as early as 24 hours posttreatment in the patient 
population shedding PA/I38X-substituted viruses are not clear. 
The initial decreases in viral titer were similar in the baloxavir 
subgroups, and the PA/I38X-substituted viruses were not de-
tectable in patient samples prior to day 3. However, this raises 
the possibility that host factors may have played a role in slower 
symptom resolution and emergence of PA/I38X-substituted 
viruses. In this regard we found that lower baseline neutralizing 
antibody titer was significantly associated with higher frequency 
of PA/I38X-substituted virus emergence. In such patients with 
low baseline antibody titers, variant viruses with reduced sus-
ceptibility may have emerged due to limited host immune 
responses at the time of waning plasma BXA concentrations 
(see below). However, we did not examine early innate immune 
or antibody responses during the first 3–5 days in our study. In 
any case, the possibility that emergence of PA/I38X-substituted 
viruses might be associated with prolongation of virus repli-
cation and influenza illness in important risk populations (eg, 
infants and children, hospitalized patients, and immunocom-
promised hosts) will require careful study.

PA/I38X-substituted viruses were not present in any patient 
at baseline, consistent with evidence that circulating viruses 
with PA/I38X substitutions have been very rare to date [29, 34]. 
In the phase 2 trial, treatment-emergent PA/I38X-substituted 
viruses were detected in 2.2% of patients with paired sequence 
data (1.3% of all baloxavir-treated, influenza-infected patients), 
all of whom were infected with A(H1N1)pdm09 viruses [22]. 
Treatment-emergent influenza viruses with reduced suscep-
tibility have been observed with both adamantanes and NAIs. 
The frequency of resistant viruses post-rimantadine treat-
ment was 33% in adults, during a period when adamantane-
susceptible viruses were circulating [35]. Furthermore, the 
M2/S31N substitution conferring adamantane resistance does 
not confer a fitness loss and now persists in more than 95% 
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of currently circulating influenza A  viruses among humans 
[36]. In prospective studies with oseltamivir, the frequency of 
treatment-emergent oseltamivir-resistant virus was approxi-
mately 1% in outpatient adults [32]. The current study did not 

test for oseltamivir resistance. A comparison of the frequencies 
of treatment-emergent viruses with reduced susceptibility 
across studies is difficult because of varying assay methods and 
monitoring approaches used to identify variant viruses [37, 38], 
as well as differences in circulating strains. However, the avail-
able data indicate the frequency of PA/I38X-substituted viruses 
is higher in A(H3N2)-infected patients following single-dose 
baloxavir treatment than the frequency of oseltamivir resistance 
seen with oseltamivir treatment [32].

Due to a lack of proofreading activity, influenza viruses have 
a high gene mutation rate resulting in approximately 1 error 
per replicated genome [39]. Nonsynonymous mutations can 
lead to variant viruses evading either host antibody responses 
(if substitutions occur in HA antibody binding sites) or an-
tiviral drug pressure (if substitutions arise in drug binding 
sites). The error-prone properties of the virus mean that 
mutations, like those that lead to PA/I38X substitutions, will 
inevitably occur during viral replication, such that under se-
lective baloxavir treatment the PA/I38X-substituted viruses 
may become dominant in a viral population due to their rep-
lication advantage over baloxavir-sensitive wild-type viruses 
in some patients (Figure 1). In our study, most patients with 
PA/I38X-substituted viruses were Japanese, who had somewhat 
higher plasma BXA levels compared to American patients due 
to ethnic differences in BXA exposure [40]. However, we did 
not see any clear differences in plasma BXA concentrations in 
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Japanese patients with PA/I38X-substituted viruses compared 
to those without (Supplementary Figure 4). While potentially 
contributory, BXA exposure differences are insufficient to ex-
plain the selection of PA/I38X-substituted viruses in our study, 
and further pharmacokinetic-pharmacodynamic studies in 
larger populations are required.

Notably, PA/I38X-substituted viruses tended to emerge at 
days 3–5 along with decreasing plasma BXA concentrations. 
The C72 estimated plasma BXA concentration was approx-
imately 30  ng/mL (62  nmol/L) in both subgroups with and 
without PA/I38X-substituted viruses. This concentration is 
about 54- to 75-fold higher than the EC50 against wild-type 

Table 2. Baseline Characteristics of Baloxavir-Treated Patients With A(H3N2) Virus Infection and Patients With and Without Treatment-Emergent PA/
I38X-Substituted Viruses

Baloxavir Marboxil

Characteristic
Patients With PA/I38X-

Substituted Viruses (n = 35)
Patients Without PA/I38X-

Substituted Viruses (n = 292)
Total 

(n = 327)a

Age, y, median (range) 32.0 (13–64) 31.0 (12–64) 31.0 (12–64)

Weight    

 Mean, kg (SD) 58.26 (12.26) 64.90 (14.75) 64.19 (14.63)

 <80 kg, n (%) 34 (97.1) 244 (83.6) 278 (85.0)

  BMI, kg/m2, mean (SD) 21.63 (3.73) 23.39 (4.39) 23.20 (4.35)

Sex, male, n (%) 14 (40.0) 156 (53.4) 170 (52.0)

Region, n (%)    

 Japan 33 (94.3) 233 (79.8) 266 (81.3)

 United States 2 (5.7) 59 (20.2) 61 (18.7)

Composite symptom score at baseline, mean (SD) 12.60 (2.60) 13.16 (3.28) 13.10 (3.21)

Body temperature at baseline, °C, mean (SD) 38.42 (0.55) 38.50 (0.55)b 38.49 (0.55)c

Infectious virus titer at baseline, log10TCID50/mL, 
mean (SD)

6.23 (1.81)d 6.04 (1.63)e 6.06 (1.65)f

Time to treatment from symptom onset, n (%)    

 0 to ≤12 hours 6 (17.1) 38 (13.0) 44 (13.5)

 >12 to ≤24 hours 16 (45.7) 120 (41.1) 136 (41.6)

 >24 to ≤36 hours 9 (25.7) 89 (30.5) 98 (30.0)

 >36 to ≤48 hours 4 (11.4) 45 (15.4) 49 (15.0)

Influenza vaccination, n (%) 9 (25.7) 79 (27.1) 88 (26.9)

Neutralizing antibody titer, n (%)    

 <20 13 (37.1) 51 (17.6) 64 (19.8)

 ≥20 22 (62.9) 238 (82.4) 260 (80.2)

Meal before administration, n (%)    

 Yes 22 (62.9) 176 (60.3) 198 (60.6)

 No 13 (37.1) 116 (39.7) 129 (39.4)

Time from meal before administration, n (%)    

 <2 hours 1 (4.5) 6 (3.4) 7 (3.5)

 ≥2 to ≤4 hours 9 (40.9) 51 (29.0) 60 (30.3)

 >4 hours   12 (54.5) 119 (67.6) 131 (66.2)

Meal after administration, n (%)    

 Yes 32 (91.4) 237 (81.2) 269 (82.3)

 No 3 (8.6) 54 (18.5) 57 (17.4)

 Missing data 0 1 (0.3) 1 (0.3)

Time until meal after administration, n (%)    

 <2 hours 16 (50.0) 112 (47.3) 128 (47.6)

 ≥2 to ≤4 hours 8 (25.0) 61 (25.7) 69 (25.7)

 >4 hours  8 (25.0) 64 (27.0)  72 (26.8)

Abbreviations: BMI, body mass index; PA/I38X, amino acid substitutions of isoleucine at position 38 of virus polymerase acidic protein; TCID50, 50% tissue culture infectious dose.
aIntention-to-treat infected population population with A(H3N2) virus infection and paired baseline and follow-up reverse transcription polymerase chain reaction-positive samples evaluable 
for Sanger sequencing.
bn = 290.
cn = 325.
dn = 34.
en = 284.
fn = 318.
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recombinant influenza A(H3N2) virus in vitro (0.40 to 0.56 ng/
mL), but quite close to the EC50s for laboratory strains [29] 
and for the clinical isolates with PA/I38T substitutions in 
this study (36 to 63  ng/mL). Thus, at days 3–5, plasma BXA 
concentrations would be near or below the EC50 for PA/I38T-
substituted viruses, but still well above the EC50 for wild-type 
virus. Indeed, in 7 patients with NGS and pharmacokinetic 
data, PA/I38T-substituted viruses were first observed when 
the plasma BXA concentration was 15.4 to 32.2 ng/mL (Figure 
1), indicating that plasma BXA concentrations had decreased 
to levels for which decreased inhibition of PA/I38T virus rep-
lication is seen in vitro. Our observations indicate that alter-
native dosing regimens or treatment approaches (eg, repeat 
baloxavir dosing at 48–72 hours or combination with NAI) 
warrant study to reduce the risk of variant viruses emergence, 
especially in patients with greater likelihood of prolonged viral 
replication (eg, young children, seriously ill, hospitalized, or 
immunocompromised).

Among the strengths of our study are that our results are 
complemented by data on BXA pharmacokinetics [40] and that 
changes in phenotypic susceptibility conferred by the PA/I38T 
substitutions in clinical isolates were confirmed to be com-
parable to those generated in laboratory strains. We directly 
genotyped clinical specimens both before and after baloxavir 
treatment, without an intervening propagation step [29], and 
used nested PCR sequencing to effectively lower the level of 
detection, allowing identification of variant viruses later in the 
course of infection when virus titers are relatively low. However, 
we first screened viruses for PA substitutions genotypically by 
Sanger sequencing, and therefore we may have missed minor 
variant viruses and may not have detected them at the other 
time points or changes in other viral genes. Furthermore, 
analyses for assessing clinical impact of PA/I38X-substituted 
viruses were not prespecified in the protocol, and the study was 

not adequately powered to assess risk factors in the baloxavir 
subgroups with and without PA/I38X-substituted viruses. 
The trial included patients from Japan and the United States 
during the 2016–2017 season who were primarily infected with 
A(H3N2) virus, and the frequency of PA/I38X-substituted 
virus emergence may differ for other patient populations with 
more prolonged viral replication, seasons, or types/subtypes 
of influenza virus. In this regard we found less variant viruses 
emergence in uncomplicated influenza A(H1N1) and type B 
virus infections [22].

The transmissibility of PA/I38X-substituted viruses is cur-
rently unknown and needs assessment to understand the risk 
that such viruses may spread amongst the community in the 
absence of drug pressure [41]. Although their replicative fit-
ness in vitro is reduced [28, 29], it is possible that secondary 
permissive mutations could restore infectivity and transmissi-
bility, as has been observed for some NAI- and adamantane-
resistant viruses [5, 9, 16]. The rebound in infectious viral titer 
and prolonged virus detection in baloxavir recipients with PA/
I38X-substituted viruses beyond what was seen in the placebo 
group does suggest that these variant viruses retain at least 
some level of fitness. Studies of the replicative capacity and 
transmissibility of PA/I38X-substituted viruses are currently 
underway in animal models, and a household-based clinical 
trial (JapicCTI-184180) is underway to explore the potential 
for human-to-human transmission of viruses from baloxavir-
treated index cases. The potential transmissibility of PA/I38X-
substituted viruses should be monitored carefully through 
surveillance studies.

In conclusion, the emergence of viruses with PA/I38X 
substitutions following baloxavir treatment was associated 
with transient rises in infectious virus titers, prolongation of 
virus detectability, initial delay in symptom alleviation, and 
uncommonly with symptom rebound.

Table 3. Identification of Prognostic Factors for Emergence of PA/I38X-Substituted Viruses by Logistic Regression Analysis

Parameter Odds Ratio 95% CI P  Value

Sex, male vs female 0.715 0.308–1.665 .4370

Baseline body weight, by 1 kg 0.967 0.933–1.001 .0603

Baseline composite symptom score, by 1 score 0.943 0.838–1.061 .3330

Baseline body temperature, by 1 degree 0.572 0.269–1.217 .1469

Baseline neutralizing virus antibody titer, ≥20 to <20 0.335 0.150–0.751 .0079

Baseline influenza virus titer, by 1 log10TCID50/mL 1.049 0.830–1.327 .6883

Time to treatment from symptom onset, by 12 hoursa 0.740 0.481–1.139 .1715

Meal before administration on day of dosing, yes vs no 1.089 0.499–2.377 .8307

Meal after administration on day of dosing, yes vs no 1.598 0.435–5.875 .4802

Medical history, yes vs nob 0.823 0.378–1.792 .6236

A total of 312 baloxavir-treated patients infected with influenza A(H3N2) virus who had paired sequencing data available and had baseline characteristic data for possible risk factor were 
included in this analysis.

Abbreviations: CI, confidence interval; PA/I38X, amino acid substitutions of isoleucine at position 38 of virus polymerase acidic protein; TCID50, 50% tissue culture infectious dose.
aTreated as ordered category of 4 levels (≥0 to ≤12 hours, >12 to ≤24 hours, >24 to ≤36 hours, >36 to ≤48 hours).
bPrevious or concurrent significant condition such as hospitalization, all concurrent medical conditions, and surgical history within 12 months.

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article-abstract/doi/10.1093/infdis/jiz244/5532607 by guest on 20 July 2019



Baloxavir Variants and Influenza Outcomes • jid 2019:XX (XX XXXX) • 9

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by 
the authors to benefit the reader, the posted materials are 
not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corre-
sponding author.
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