
1534-4320 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2019.2946194, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract—It is well known that most patients with Parkinson’s disease 

(PD) have different degree of movement disorders, such as shuffling, 

festination and akinetic episodes, which could degenerate the life quality of 

PD patients. Therefore, it is very useful to develop a computerized tool to 

provide an objective evaluation of PD patients’ gait. In this study, we 

implemented a novel gait evaluating approach to provide not only a binary 

classification of PD gaits and normal walking, but also a quantification of 

the PD gaits to relate them to the PD severity level. The proposed system is 

a dual-modal deep-learning-based model, where left and right gait is 

modeled separately by a convolutional neural network (CNN) followed by 

an attention-enhanced long short-term memory (LSTM) network. The left 

and right samples for model training and testing were segmented 

sequentially from multiple 1D vertical ground reaction force (VGRF) 

signals according to the detected gait cycle. Experimental results indicate 

that our model can provide state-of-the-art performance in terms of 

classification accuracy. It is expected that the proposed model can be a 

useful gait assistance to provide a quantitative evaluation of PD gaits with 

high confidence and accuracy if trained suitably. 

 

Index Terms—Parkinson’s disease (PD), Attention mechanism, 

Classification, Long Short-Term Memory (LSTM), Vertical 

Ground Reaction Force (VGRF) 

 

I. INTRODUCTION 

ARKINSON’S disease (PD) is a representative 

degenerative disease that occurs due to a deficiency of 

nerve cells, called dopamine neurons, distributed in the 

substantia nigra of the brain [1]. Aging remains the biggest risk 

factor for developing idiopathic Parkinson's disease [2]. Hence, 

the increasingly aging population indicates that more and more 

elder persons could be affected by PD. Typical symptoms of the 

PD patients mainly consist of two parts: motor disabilities and 

non-motor disabilities. Characteristic motor features include 

tremor, bradykinesia (i.e., slowness of movement), rigidity (i.e., 
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resistance to externally imposed movements), and impaired 

postural balance [3]. While the non-motor symptoms could be 

sleep disturbance, impaired heart rate variability, sialorrhea, 

sweating, and orthostatic hypotension [4]. PD is a chronic 

neurodegenerative disease, which means that the condition can 

become progressively worse as neuronal (brain) tissue dies and 

neurotransmitter levels fall [5]. Therefore, regular clinical 

assessment and close monitoring of the disease progression are 

very important to realize a dynamic management of the PD 

patients, and thus ensure their life quality can maintain a level 

as high as possible. 

Current clinical assessment methods for PD patients still rely 

on patients’ or caregivers’ self-descriptions and 

clinician-mediated questionnaires, such as Unified Parkinson’s 

Disease Rating Scale (UPDRS), freezing of gait questionnaire 

(FOG-Q) [6], Activities of Daily Living (ADL) part 14 [7], etc. 

In practice, skilled clinicians often rate the severity of a PD 

patient in certain aspect according to the performance of 

conducting the tasks designed in the questionnaires. This kind 

of subjective and time-consuming method tends to produce 

inconsistent results and thus plays a restricted role in 

diagnosing and monitoring. Hence, the diagnosis in current 

clinical practice requires regular review as certain ‘red flag’ 

features, such as rapid progression or early falls, point towards 

related diagnosis such as progressive supranuclear palsy or 

multiple system atrophy [5]. 

How to assess PD-related signs and symptoms objectively, 

efficiently and unobtrusively is very appealing to both the 

clinicians and the patients since it can boost the effectivity and 

efficiency of clinical visits and disease management. With the 

advent of new sensing technology and corresponding analysis 

methods, such a clinical wish appears to be coming within 

reach. For years, substantial efforts have been undertaken to 

develop various approaches to characterize almost all known 

PD symptoms (e.g., gait [8, 9], bradykinesia [10], and 

dyskinesia [11]) by using different type of signals (e.g., 

acceleration [9], plantar pressure [8], and surface 

electromyogram [12]). Comprehensive reviews about this topic 

can be found in [13]. 

Our main interest of this study is to provide accurate 

differentiating PD patients from normal controls (CO) as well 

as automatic rating of their severity levels by using the gait 

information. As we know, PD is caused by the degeneration of 

dopamine and other sub-cortical neurons in the basal ganglia of 
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the brain. Dopamine functions as a neurotransmitter, which is 

responsible for relaying messages that plan and control 

movement and balance. Basal ganglia, and specifically the 

putamen in the neural network involves in timing control 

during movement [14]. Thus, the individuals with PD might be 

expected to have gait disorders with different forms as disease 

processes, such as a reduced gait speed, shorter stride length, 

increased stride-to-stride variability, shuffling gaits, and 

reduced angular excursion of the joints. According to the 

description of UPDRS rating scale, patterns of progression in 

PD can be generally classified into five stages. Stage 1 shows 

tremor and other movement symptoms on one side of the body 

without functional impairment. Stage 2 involves first signs of 

tremor and other movement symptoms on both sides of the 

body without impairment of balance. Stage 3 shows loss of 

balance and slowness of movement that fails to protect against 

falling. Stage 4 shows severe disability of standing and walking. 

Stage 5 causes stiffness in the legs and restricts the patient to 

bed or wheelchair [15]. Therefore, gait analysis, using kinetics 

[16, 17] and kinematics [8, 9] information, is a very useful 

diagnosing assistance in assessment of PD patients. 

The ground reaction force (GRF) during walking can be 

measured either as a whole by using force plate or at multiple 

positions by using pressure-sensitive sensors underneath the 

foot. Due to its usefulness in understanding how the force is 

exerted to initiate and maintain a walking, GRF was always an 

important gait signal that has attracted continuous interest in 

gait analysis. Ren et al. [18] analyzed the 

Wiener-Akaike-Granger-Schweder influences between vertical 

ground reaction force (VGRF) signals at different plantar areas 

of both feet. By employing statistical test, they proposed Gait 

Influence Diagrams (GIDs) to display whether the directed 

influence from its corresponding plantar area i to j is 

significantly different between the PD patients and the healthy 

subjects. Daliri [17] utilized the difference signal along the time 

axis at each sensor location, and then several frequency features 

were calculated from the spectrum obtained by using short-time 

Fourier transform (STFT). The best classification results they 

reported in differentiating PD patients and normal subjects is an 

accuracy of 91.20% by utilizing support vector machines 

(SVMs) as the classifier. Abdulhay et al. [19] extracted the 

stride time, stance time, swing time and foot strike profile as the 

classification features to classify normal and PD subjects. In 

their experiments, the maximum accuracy of 94.8% was 

obtained with the medium Gaussian SVM. Aşuroğlu et al. [20] 

utilized Locally Weighted Random Forest (LWRF) to perform 

regression analysis to predict the severity of PD symptoms in 

terms of Universal Parkinson Disease Rating Scale (UPDRS) 

and Hoehn and Yahr (H&Y) scale, and the correlation 

coefficient between the actual and the predicted values is 0.895 

(for UPDRS) and 0.960 (for H&Y) respectively.  

Recently, deep learning (DL) technique, as a representation 

learning approach from large-scale data, has achieved 

state-of-art performance in many different tasks, such as object 

retrieval, classification, recognition, and clustering. The huge 

success of DL is largely due to the use of deep neural networks 

that can extract powerful features, which are often more 

discriminative than handcrafting features. Moreover, the 

feature learning process can be seamlessly integrated into the 

whole framework in an end-to-end manner. In contrast, feature 

extraction and classification are two separate processes in 

traditional shallow machine learning approaches, where the 

domain-dependent features must be designed and selected with 

enough expert knowledge and the classifier also need to be 

carefully tuned to obtain the best performance. Encouraged by 

the impressive successes of DL, different efforts have also 

devoted to learning gait features that are characteristic of 

different subjects. For example, convolutional neural network 

(CNN) was utilized to detect freezing of gait, a motor symptom 

that may be the most incapacitating to PD patients [21, 22]. 

Nancy Jane et al. [23] presents a Q-backpropagated time delay 

neural network (Q-BTDNN) classifier that builds a temporal 

classification model for the task of diagnosing the severity of 

gait disturbances in PD affected patients, and the best result 

they reported is an accuracy of 92.19% on the dataset gathered 

in [24]. In another work, a two-channel model combining CNN 

and Long-Short-Term Memory (LSTM) network was 

constructed for the purpose of quantitatively assessing the PD 

patients’ gaits [25]. On the dataset gathered in [26], such a 

network provided an accuracy of 97.48% to differentiate 

patients with four different H&Y values, i.e. 0, 2, 2.5, and 3. 

Though the DL-based approaches have achieved very 

promising performance in differentiating different gaits, these 

deep networks were designed and trained without consideration 

of the biomechanical characteristics of the gait, which has been 

found to be very important in characterizing the gaits [27-29]. 

From the perspective of biomechanics, walking is a series of 

rhythmical, alternating movements of the left and right lower 

limb resulting in the forward progressing of the whole body. 

Furthermore, the left and the right lower limb both have their 

own characteristic kinematics and kinetics due to the different 

neuro-controlling signal they received. For PD patients, due to 

the disruption of neuromuscular control of gait, they are 

characterized by asymmetric motor deficits in both the upper 

and lower extremities [27], which were successfully utilized in 

several studies [28, 29] for differentiating PD gaits and normal 

gaits. Inspired by these observations, we hypothesized that 

modeling left and right gait separately should provide better 

discriminating power than a single model where left and right 

gait are considered as a whole at characterizing the gaits of PD 

patients. For this purpose, we designed a dual-modal DL 

network that has two separate channels for modeling the left 

and right gait respectively. In each channel, the multi-points 

gait VGRF time series were firstly fed into a two-layer CNN to 

learn features that reflect the inter-dependent relationship at 

positions where the force sensors are installed. Then, an 

attention-enhanced LSTM network was exploited to learn 

features that can represent the temporal embedding in a gait 

cycle. Attention is a mechanism that mimics human’s 

capability of focusing on the salient parts of the object to be 

observed instead of paying attention to the whole object. The 

attention in LSTM is a learnable vector where each element is 

in fact a weight being connected to an observation in a time 

series. It is expected that larger weights should be assigned to 
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those more important observations. The left and right gait 

features learned in two parallel channels were then combined 

with a fully connected (FC) layer and its output was fed into the 

softmax layer for the final classification. To our best 

knowledge, the proposed dual-modal DL-based model has 

never been proposed for modelling the gaits of PD patients. The 

experimental results on three gait VGRF datasets demonstrated 

that this novel model could obtain state-of-art performance in 

either binary classification of the PD gaits and normal gaits or 

multi-classification of the gaits from PD patients with different 

severity level.  

The rest of the paper is organized as follows. Section II first 

describes the three gait VGRF datasets to be analyzed in the 

present study, then some technical background is introduced, 

and lastly, the details of the proposed model is presented. 

Section III describes the experimental setups. Section IV 

reports results of our model on different datasets. Section V 

discusses findings from the experimental results. Finally, 

Section VI concludes the present research. 

II. MATERIALS AND METHODS 

A. Materials 

1) Description of dataset  

In this study, the gait dataset is provided by Hausdorff et al. 

[30]. The dataset is comprised of three different contributions 

by three research groups (Ga [26], Ju [31] and Si [24]). All 

these three studies recruited PD patients and healthy COs to 

collect their gait information for the purpose of quantitative 

analysis. In total, there are 93 patients with the idiopathic PD 

(age: 66.3 ± 9.5 (SD) years, 59 men and 34 women) and 73 

healthy COs (age: 63.7± 8.7 (SD) years, 40 men and 32 

women). The PD Severity level was graded according to two 

scales, i.e., Hoehn and Yahr (H&Y) and Unified Parkinson’s 

Disease Rating Scale (UPDRS). The H&Y scale is comprised 

of 5 stages ranging from 1 to 5 originally and is further 

extended with two more stages, i.e. 1.5 and 2.5 [32]. The 

UPDRS scale is more complex and consists of 5 sections with a 

value ranging from 0 to 199 [33]. 

 
TABLE 1 

DESCRIPTION OF THE DATA FORMAT 

Column Description Units 

1 Time stamp Seconds 

2-9 VGRF from each of eight sensors (L1-L8) 

under the left foot 
Newton 

10-17 VGRF from each of eight sensors (R1-R8) 

under the right foot 
Newton 

18 Total force under the left foot Newton 

19 Total force under the right foot Newton 

 

According to the experimental protocol, every participant 

was asked to walk in their usual, self-selected pace on level 

ground for about two minutes. VGRF (in Newton) generated 

when the foot contact the ground was measured via 8 

force-sensitive sensors that located under each foot. The 

coordinates of these sensors in an underfoot plane when a 

person is comfortably standing with both legs parallel to each 

other are shown in Fig.1. The outputs of the sensors were 

recorded by an A/D converter at a sampling rate 100Hz. Every 

record had 19 parameters that corresponded to each row in the 

dataset file. As shown in Table 1, it includes the time stamp, 16 

VGRF data corresponding to 16 force sensors under both feet 

and 2 total VGRF data. 

 

 
Fig. 1. The positions of the force-sensitive sensors underneath left and right 
foot 

 

2) Preparation of data instances 

As shown in Fig.2, the gait during normal walking for either 

left or right lower limb is a quasiperiodic process. Hence, for a 

more reasonable modelling and learning of the innate gait 

characteristics, it is better to segment gait data on the basis of 

walking cycles [34, 35]. For such purpose, this study utilized 

the total force to detect the walking cycles of the corresponding 

lower limb. A gait cycle for single lower limb is defined as a 

period from the beginning moment when the corresponding 

foot contacts the ground to the ending moment when the foot 

leaves the ground. In the total force vs. time curve, the force 

jumps from zero to non-zero value at the beginning moment, 

while it jumps from non-zero back to zero value at the ending 

moment. By simple thresholding technique, these key 

zero-crossing points can be detected and thus the gait cycles 

can be segmented. With the detected gait cycles, the 

multi-points VGRF data sequence can be divided into many 

data instances for training and testing in a DL-based model. As 

an illustration, Fig. 3 presents the sensor outputs on the basis of 

a segmented gait cycle for gaits of normal COs and PD patients 

with different H&Y scores. 

 

 
 

Fig. 2. A gait cycle for the right limb 
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Fig. 3. VGRF of healthy COs and PD patients with different H&Y scores. The 

upper row is for the VGRF of the left foot, while the lower row is for the right 

foot. HC denotes healthy control, while PD 2, 2.5, and 3 represents the PD 
patient with different H&Y score. The number in the legend corresponds to the 

feature index in Table 1. 

Due to the fluctuation of the walking speed and stride length 

from one cycle to another cycle, the durations of gait cycle are 

not always with the same length. Considering that feature 

extraction and pattern classification requires N-sized vectors 

for each cycle, where N is a fixed length, a zero-padding 

method is used in this study to make all the detected gait cycles 

have the same length of N = 150. This specific value of N is 

determined based on the sample rate (100 samples per second) 

and the slowest walking speed (about 1.5 seconds for the 

maximum duration of one gait cycle) that is observed in this 

study. 

As a summary, The statistics of different classes in every 

investigated dataset as well as a merged dataset of them all is 

listed in Table 2.  
TABLE 2  

THE DIVISION OF DATA INSTANCES ACCORDING TO THE HEALTHY 

CONDITION  

 H&Y score 

Dataset Healthy COs PD patients 

 0 2 2.5 3 Merged (2, 2.5, 3) 

Ga [26] 4010 4498 2147 1344 7989 

Ju [31] 1858 3475 4434 959 8868 

Si [24] 3211 2938 722 0 3660 

Merged 9079 10911 7303 2303 20517 

 

B. Technical background 

This paper mainly focuses on training a dual-modal 

attention-enhanced CNN-LSTM for discrimination analysis of 

gait patterns. Therefore, this section will briefly introduce some 

preliminary knowledge including CNN, LSTM and attention 

mechanism 

1) CNN 

By applying convolution operation with different kernel size 

at different layer with different scale, CNN can learn a 

hierarchy of progressively more abstract features that are hard 

to be designed manually. Consider a CNN with L  

convolutional layers, and its input is a 2D signal. The kernels 

for each layer have a size of l lM N , and they are 

parameterized by tensor 1( ) l lF m n Fl −  
W  and bias 

( ) lFl b

where {1, , }l L  is the layer index, lF  is the feature map 

number of the l-th layer, and m n  is the kernel size. Then, for 

the l-th layer, the feature component 
( )

,
lFl

i j E at the position 

of (i, j) in the 2D space is a function of the incoming activation 

tensor 1 1 1( 1) l l lF M Nl − − − − E  

    
,

( ) ( ) ( ) ( 1)

, :, ', ', ', '
' 1 ' 1

,
m n

l l l l

i j i j i m i j n j
i j

f
• •

−

+ − + −
= =

 
= + 

 
 E b W E        (1) 

where •  denotes the inner product, and ( )f •  is an activation 

function (i.e. sigmoid( ) , tanh( )  and rectifying linear unit 

( ReLU )). 

 
Fig. 4. Typical structure of LSTM, which consists of one memory state cell C  

and three gate functions (input ti , forget 
t

f and output to ).The update of 

each gate and state can be found in Eq. (2)-(8). 

 

2) LSTM 

Different from CNN, LSTM is a variant of recurrent neural 

network (RNN) that can better learn the dynamic timing 

behavior [36]. As shown in Fig 4, a basic LSTM unit explicitly 

introduces one memory state cell C  and three gate functions 

(input ti , forget tf and output to ) into their state dynamics. 
t

g

maps the value of input to a range from -1 to 1. The input gate 

determines whether or not to let new input to alter the state of 

the memory cell, forget gate controls what to be forgotten and 

what to be remembered by the memory cell, and the output gate 

let the state of the memory cell impact the output at the current 

time step. Mathematically, each vector in the LSTM cell can be 

computed as follows: 

                                   
1t

t

− 
=  

 

h
X

x
                                   (2) 

( )t =  +
f f

f W X b         (3) 

( )t =  +
i i

i W X b         (4) 

( )t o o=  +o W X b         (5) 

tanh( )t c cg W X b=  +         (6) 

1t t t t tc f c i g−= +        (7) 

tanh( )t t t=h o c             (8) 
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where 
iW ,

fW , 2N N

o

W are the weighted matrices and 
ib ,

fb , N

o b  are bias vectors of LSTM to be learned during 

training, parameterizing the transformations of the input, forget 

and output gates respectively. tx  is the input of LSTM cell unit, 

  is the sigmoid function, and  stands for element-wise 

multiplication. 

 

3) Attention mechanism 

 
Fig. 5. The structure of a recurrent neural network with attention mechanism 

For temporal sequential data, the introduction of attention is 

to assess each time step observation with an importance score 

or salience weight since not all observations contribute equally 

to the representation of a pattern, and thus construct a hidden 

representation by integrating these scores to obtain better 

classification performance. There are different ways [37, 38] 

for constructing and learning such importance score, but in 

general they all utilize the temporal context information. As an 

illustration, the attention mechanism proposed in [38] is shown 

in Fig. 5.  

Given an input sequence 
1, , 1{ , , }N Nx x x= of length N in 

which D

tx   denotes the observation at the t-th time step, the 

attention score at  at the time step t is a scalar value, which 

indicates the importance of the current observation to the whole 

temporal sequence. Supposing that a bi-directional LSTM is 

used to model the input vector, then the LSTM’s forward 

hidden state 
M

t h  and the backward hidden state 
M

t h  

can be concatenated together, i.e., [ , ] 2M

t t t= h h h , to 

summarize the information embedded in the input vector tx . 

Thus, the attention score at  can be calculated as the follows: 

tanh( )t t= +u Wh b       (9) 

1

exp( )
a

exp( )

T

t

t N
T

t

t=

=



u v

u v

      (10) 

where W  is a linear transformation matrix and vector b  is a 

bias term. Eq. (10) is in fact a softmax( ) function, which 

realizes the calculation of a normalized attention score. The 

attention score is measured as the similarity of tu  with a 

trainable context vector v . After obtaining the attention score, 

the final output hidden state 2M

wt h can be calculated as a 

weighted sum of all the hidden states of LSTM: 

1

N

wt t t
t

a
=

= h h                (11) 

C. Dual-modal network for gait classification 

To model the left and right gait explicitly in a single 

framework, we present a novel dual-modal framework for gait 

classification, which is comprised of two branches with same 

structure. In each branch, a neuro network was first applied to 

learn discriminative representations of the 2D input data, i.e., 

the multi-points VGRF time series. The attention-enhanced 

bi-directional LSTM was then utilized to model the temporal 

dynamics of the feature maps output by CNN. Finally, the two 

attention-weighted hidden state vectors output from the LSTM 

cells are concatenated and fed into a FC layer, whose output is 

the input to the softmax classifier. The proposed Dual-modal 

with each branch has a Convolutional network followed by an 

Attention-enhanced bi-directional LSTM is referred to as 

DCALSTM. 

 
Fig. 6. The architecture of the proposed DCALSTM. Conv1, and Conv2 are 

two convolutional layers, Bi-LSTM represents bi-directional LSTM, and 

Flatten is a layer where all the other dimensions except the temporal dimension 
are flattened to a 1D vector. T is the length of data instance in the temporal 

dimension, c is the number of the force sensors underneath one foot, and n is the 

length of a hidden state vector (including both directions) in a bi-directional 
LSTM. Fl and k×k indicate the number of feature maps and the kernel size 

respectively. 

1) Architecture of DCALSTM 

The structure of the proposed DCALSTM is illustrated in Fig. 

6. In each branch, the input has a dimension of 150 9 1B   , 

where B is batch size of training or testing samples, 150 is the 

time span of a sample, and 9 is the number of the analyzed 

VGRF signals underneath a specific foot as mentioned in 

section II. The CNN has three layers, and in each layer a 

convolution operation is followed by a non-linear activation 

function (e.g., ReLU) to compute the feature map. For 

simplicity, in our network, the conventional kernel in all layers 

has the same size of k k , and the number of feature maps in 

the two layers is 1F  and 2F  respectively. Note that, for the 

purpose of learning the interaction between those different 

force sensing points during a gait cycle, a 2D instead of 1D 

kernel was utilized to perform both temporal (along the time 

axis) and spatial (between different sensing points) 

convolutional operation. Furthermore, in our DCALSTM, the 

convolutional layers do not include a pooling operation due to 
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the limited size of the data samples corresponding to a gait 

cycle in both dimensions. Accordingly, the feature map output 

by the last convolutional layer has a size of 3150 9B C   . By 

dimension flatting, the above feature map can be transformed 

into a tensor with a size of 4150B C  , where 4 39C C=  . 

Such a tensor will be fed into the followed attention-enhanced 

LSTM (AE-LSTM) whose structure is shown in Fig. 5.  

The outputs of the AE-LSTMs in the two branches were 

integrated by a concatenation fusion, which was then passed 

into a FC layer to be transformed into a g-dimensional (g 

classes) vector. Finally, the softmax classifier realizes mapping 

the output of the FC layer to a probability distribution and 

discriminates whether a subject has PD disorders or rate the 

severity level of a PD patient. 

2) Model Training 

For ease of presentation, the model parameters to be trained 

can be divided into two groups. The first group includes the 

weight matrix 1{ , , }L=W w w  involved in either CNN or 

AE-LSTM, and the second group includes the corresponding 

bias 1{ , , }L=B b b . Here, the subscript 1 to L refers to the 

layer index, and the L-th layer is the softmax layer. 

The loss function of our proposed model consists of two 

terms. The first loss term is the cross-entropy loss, which aims 

to minimize the classification error for the given training 

samples, and it is computed by 

( ) ( )

1

1

1
ˆ( , , ) , log

N
i i

i=

J
N

= − X W Β y y         (12) 

where 
( )ˆ i

y  is the predicted label, N  is the number of 

training samples, 
( )i

y  is a one-hot vector that represents the 

label of the i-th sample, X  is the training dataset, and •  

denotes the inner product. 

The second item is the weight decay term, which is designed 

to decrease the magnitudes of the weights iw  and the bias ib , 

and hence it is beneficial to prevent over-fitting. It is calculated 

as 

2 2

2 2
1

( , ) ( )
L

l lF
l=

J = +W Β w b                   (13) 

By incorporating the loss terms in Eq. (12) and (13) together, 

the training loss function of our proposed model can be 

formulated as  

( )1 2min ( , , ) ( , )1J= J J+X W Β W Β       (14) 

2 2(n) (n)

1 2
1 1

1
ˆmin , log ( )

N L

l lF
i= l=

J=
N


 

− + + 
 

 y y w b   (15) 

where 1  is a tradeoff parameter that balances the relative 

importance of the two terms.  

In our experiments, the AdaGrad algorithm [39] was utilized 

as our optimization method. As a self-adaptive learning 

mechanism, AdaGrad allows larger updates (large learning rate) 

for infrequent parameters, and smaller updates (small learning 

rate) for frequent parameters, resulting in better robustness and 

faster convergence. We didn’t choose Adam (another popular 

self-learning algorithm) [40], because it has more parameters to 

be tuned and our experiments showed that AdaGrad can 

provide similar performance comparable to that by Adam. 

III. EXPERIMENTAL SETTINGS 

This section introduces the experimental settings and 

evaluation criteria used to assess the effectiveness of the 

proposed DCALSTM for gait characterization. Two main 

experiments were conducted to evaluate the effectivity of our 

approach. The first experiment detects the PD patients from the 

healthy COs, which is a typical binary classification problem. 

In the second experiment, our proposed model was exploited to 

realize a multi-label classification problem for a quantitative 

rating of the PD patients’ severity level.  

For comparison, we also realized six baseline approaches, 

including four DL-based models (DCNN, DALSTM, 

DCLSTM, and CNN-LSTM) and two traditional classification 

schemes (TRAD1 and TRAD2). Some details above these 

models are given as follows: 

DCNN: it has only a CNN instead of the attention-enhanced 

LSTM in each branch. 

DALSTM: it has only an attention-enhanced LSTM in each 

branch.  

DCLSTM: it removes the attention mechanism from the 

structure of DCALSTM. 

CNN-LSTM: it is a model proposed in [41], whose input 

doesn’t differentiate left or right gait. It also has two branches, 

where one branch was used to extract spatial features by using 

CNN, and the other branch exploited double-layer LSTM to 

learn temporal dynamics. 

TRAD1: the feature set, as proposed by Abdulhay et al. [19], 

includes: stride time, stance time, swing time and foot strike 

profile for both lower limbs. 

TRAD2: the feature set is designed by Aşuroğlu et al. [20]. 

For each force signal segment at different sensing position, 

total sixteen time-domain features (e.g., skewness, kurtosis, 

entropy, and energy) and seven frequency-domain features (e.g., 

mean, maximum, and minimum value of the FFT magnitude) 

are extracted.  

After some performance tuning process, the classifiers used 

in TRAD1 and TRAD2 are chosen to be random forests (RF), 

and the number of decision trees in RF is set to be 50. The 

hyper-parameters (e.g., learning rate, dropout rate, and batch 

size) for DCNN, DALSTM, and DCLSTM were kept same as 

those for the proposed DCALSTM. The parameters for 

CNN-LSTM were determined according to the 

recommendations in [41]. In our objective function of Eq. (15), 

the weight decay parameter 1  was optimized by varying the 

parameter 1  from the set of 5 4 3 210 , 10 , 1{ }10 , 0   − − − − , and 

changing the iteration number from 1000 to 15000 with a stride 

of 1000 respectively. As a summary, the settings for important 

hyper-parameters are listed in Table 3. 
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TABLE 3 

THE HYPER-PARAMETERS FOR ALL THE MODELS REALIZED IN 

THIS STUDY 

Learning parameter Value or method 

Batch size 128 

Regularization dropout (rate = 0.5) 

Learning rate 0.01  

Training iterations 15000 

Kernel size 33 

Feature map number
1F  32 

Feature map number 
2F  32 

Hidden state vector length 256 

Attention context vector length 128 

1


 
0.0001 

For the purpose of evaluating all the classification models, 

we conducted 5-fold cross validation in a stratified manner. 

Firstly, the original data set is divided into 5 independent folds. 

Four of the five folds are combined and used as a training set; 

the remaining fold is used as a testing set. Each training set is 

resampled and resized by the SMOTE algorithm [42], so that 

the number of instances in every class is approximately 

balanced. The classification performance was measured by 

accuracy (Ac), sensitivity (Se), and specificity (Sp). Further, in 

order to determine whether the results obtained by the proposed 

model are statistically different from that by other methods, 

Wilcoxon’s signed ranks tests [43] are conducted between the 

accuracy results achieved by these compared algorithms. In 

these tests, a p-value is computed after an experiment is 

performed twenty times. If the p-value is less than the 

significance level of 0.05, there are significant differences 

between these methods. All the models were implemented with 

Tensorflow library (version tensorflow-gpu-1.9.0), and our 

hardware platform was configured with Intel(R) Core(TM) 

i7-7800X CPU@3.50GHz, Nvidia GeForce Titan X 16GB 

GPU, and 64 GB RAM. 

IV. RESULTS 

The results of different loss regularization parameter 1  to 

the iteration number on four datasets are plotted in Fig.7. 

Considering the results on all these datasets, a value of 0.0001 

is set for the loss regularization parameter 1  throughout our 

experiments. Fig. 8 shows the binary classification accuracies 

of training set and testing set on the merged dataset during the 

model learning process. As can be seen from Fig. 8, the 

proposed DCALSTM outperforms other models with an 

apparent margin on both training and testing set. Table 4 

presents the results of all compared models on the binary 

classification problem, where the PD patients are discriminated 

from the healthy COs. For the two traditional classification 

approaches, TRAD2 outperforms TRAD1 with apparent 

margin in all experiments. While for the DL-based models, the 

DCNN model performs the worst with an accuracy of 96.17%, 

96.22%, 96.94%, and 96.28% on Ga [26], Ju [31], Si [24], and 

the merged dataset respectively. The other models all have 

LSTM in its network structure, and they can obtain 

comparatively better results. The results for CNN-LSTM 

model are better than DALSTM and slightly inferior to that of 

DCLSTM in most cases. The difference between DCLSTM and 

DCALSTM is that DCLSTM has no attention mechanism, and 

it is found that DCALSTM can provide better results than 

DCLSTM in all cases.  

 
Fig. 7. The accuracies of our proposed DCALSTM model under different loss 

configurations. The binary classification performance was assessed on four 

different datasets including (a) Ga dataset [26] (b) Ju dataset [31] (c) Si dataset 

[24] (d) Merged dataset. The regularization parameter 1  varies from the set of 
5 4 3 210 , 10 , 1{ }10 , 0   − − − −  and the iteration number changes from 1000 to 15000 

with a stride of 1000 

 

 
Fig 8. (a) Training error and (b) testing error on the merged dataset by all 

compared models. The iteration number changes from 1000 to 15000 with a 
stride of 1000. 

Table 5 lists the results of PD H&Y scale rating problem 

obtained by different DL-based models. Similarly, the 

proposed DCALSTM provides the highest classification 

performance on all datasets in terms of accuracy. More 

specifically, the accuracy for the dataset gathered in Ga [26], Ju 

[31], Si [24], and the merged one is 98.11%, 98.36%, 99.01%, 

and 98.03%, respectively. Furthermore, for a visual display of 

the classification results between four different H&Y scores, 

the confusion matrices obtained by the proposed DCALSTM 

are shown in Fig. 9, where several observations can be made. 

First, for the healthy COs and the PD patients with the highest 

H&Y score 3, our DCALSTM can provide almost 100% 

detection accuracy. Second, for the Si dataset, though it has 

fewer severity levels, the accuracy of this dataset is similar, 

mailto:CPU@3.50GHz
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even slightly better than the other two datasets. This is because 

that the other datasets (Ga and Ju) both have more severity 

levels with approximate H&Y scores (i.e., 2, 2.5 and 3). More 

severity levels mean that there are more classes to be 

differentiated, and the PD patients with similar severity levels 

can be misclassified each other, which indicates that the gait 

difference between these levels of patients are not very 

apparent, and they could be wrongly labelled by the raters in 

preparing the dataset. 

Table 6 tabulates the average p-values when the proposed 

model is against other classification schemes. Obviously, the 

proposed dual-modal DL network is statistically different from 

other counterparts with 5% significance level in terms of 

accuracy performance. 

 
TABLE 4 

THE RESULTS OF THE PROPOSED DCALSTM MODEL FOR 
DIFFERENTIATING GAITS OF PD PATIENTS FROM THAT OF 

NORMAL CONTROLS USING THE 5-FOLD CROSS-VALIDATION 

METHOD 

Model 
Ga [26] Si [24] 

Se 

(%) 

Sp 

(%) 

Ac 

(%) 

Se 

(%) 

Sp 

(%) 

Ac 

(%) 

TRAD1 94.99 93.99 94.66 94.84 94.99 94.91 

TRAD2 98.20 97.63 98.01 98.09 98.16 98.12 

DCNN 96.09 96.33 96.17 96.89 97.01 96.94 

DALSTM 97.88 97.08 97.62 98.01 97.94 97.98 

DCLSTM 98.61 98.98 98.73 98.66 99.10 98.86 

CNN-LSTM 98.76 98.35 98.63 98.47 98.88 98.67 

DCALSTM 99.35 99.23 99.31 99.23 99.35 99.29 

Model 
Ju [31] Merged 

Se 

(%) 

Sp 

(%) 

Ac 

(%) 

Se 

(%) 

Sp 

(%) 

Ac 

(%) 

TRAD1 94.96 93.60 94.72 92.21 91.79 92.08 

TRAD2 97.94 97.58 97.87 97.77 97.02 97.54 

DCNN 96.31 95.80 96.22 96.34 96.13 96.28 

DALSTM 97.25 97.09 97.22 97.84 97.43 97.71 

DCLSTM 98.40 97.90 98.31 98.90 98.46 98.76 

CNN-LSTM 98.34 97.84 98.26 98.80 98.05 98.57 

DCALSTM 99.20 98.98 99.16 99.10 99.01 99.07 

 

 

TABLE 5 

THE RESULTS OF THE PROPOSED DCALSTM MODEL FOR PD H&Y 

SCALE RATING (FOR HEALTHY CONTROLS, THE VALUE IS ZERO) 

USING THE 5-FOLD CROSS-VALIDATION METHOD. 

Model 
Ac(%) 

Ga [26] Ju [31] Si  [24] Merged 

TRAD1 92.13 93.31 93.36 89.57 

TRAD2 96.46 97.58 97.67 96.74 

DCNN 95.26 95.90 96.01 95.78 

DALSTM 97.18 97.44 98.08 96.79 

DCLSTM 97.89 98.09 98.88 97.74 

CNN-LSTM 97.55 98.01 98.43 97.51 

DCALSTM 98.11 98.36 99.01 98.03 

 

 

 

TABLE 6 

SUMMARY OF WILCOXON’S SIGNED RANKS TESTS. THE 5% LEVEL 

OF SIGNIFICANCE IS SELECTED 

Model 
The proposed DCALSTM 

p-value Significant? 

TRAD1 < 1e-04 Yes 

TRAD2 < 1e-04 Yes 

DCNN < 1e-04 Yes 

DALSTM < 1e-04 Yes 

DCLSTM 1.75e-04 Yes 

CNN-LSTM 1.03e-04 Yes 

 

V. DISCUSSION 

For the purpose of understanding the gait dynamics and the 

relationship of its variations to the pathological alterations in 

the locomotor control system, much research in recent years 

has focused on measuring gait-related signals and then 

extracting robust and discriminative features for an objective 

quantification. Measured by the force-sensitive sensors 

embedded either in shoes or a large-area mat, the VGRF 

reflects the force of the lower limb exerted on the ground to 

maintain a continuous and repetitive locomotion of the whole 

body. As shown in Fig.3, for persons with normal gait, the 

VGRF curves bear similar profiles, which have an 

approximately symmetric hump in the middle. However, the 

humps in the profiles tend to be flattened for PD patients who 

have abnormal gait as they offer friction to the ground for a 

longer time while walking. In addition, it can also be found 

from Fig.3 that for a normal person the heel force is greater than 

the toe force, but for a PD subject the toe force is slightly 

greater than the heel force because PD patients often exert more 

pressure on his toe than his heel [44]. Therefore, by analyzing 

the measured VGRF from both feet, discriminative gait 

characteristics can be derived for different applications, such as 

medical diagnosis of gait-related diseases [44] and person 

recognition [45]. Previous studies devoted much effort on 

manually designing discriminative features and then 

fine-tuning the classifier parameters to train a machine-learning 

tool for their applications. In contrast, our approach enjoys the 

benefits of DL technique where the feature learning and 

classification are performed seamlessly in an end-to-end 

pipeline. Furthermore, by recognizing that the VGRF time 

series measured from both feet represent motor functioning of 

brain areas in each hemisphere, a DL-based framework with 

two branches is constructed to model left and right gait 

separately. Based on this framework, several problem-specific 

considerations, such as the abstraction of spatial feature and 

attention mechanism, are also included to further enhance our 

model. 
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Fig. 9. Confusion matrix (values in percentage) for all the datasets (a: Ga dataset, b: Ju dataset, c: Si dataset, and d: Merged dataset) obtained by the proposed 

DCALSTM 

 

The effectiveness of our approach was demonstrated by a 

series of experiments. As listed in Table 4 and 5, the importance 

of modeling left and right gait separately was demonstrated by 

the comparison between our model and CNN-LSTM, wherein 

the left and right gait signals were concatenated when they were 

fed into the model for training. Furthermore, the proposed 

DCALSTM model was also evaluated by being fed into only 

left or right gait data, and the obtained accuracy on the merged 

dataset for binary classification and H&Y scale rating problem 

was 98.08% and 97.45%, respectively. Such results were 

apparently lower than the corresponding results (Table 4 and 5, 

DCALSTM) obtained by using both left and right gait data. 

Therefore, left and right gait can be complementary in 

providing more discriminative feature vectors. As two 

traditional approaches, TRAD2 has much better performance 

than TRAD1, even better than some DL-based models in some 

cases. For TRAD2, the extracted temporal and spectral features 

focus on the force curve itself. While for TRAD1, the extracted 

features are mainly gait stride temporal parameters derived 

from force curve. This indicates that multiple force curves 

themselves could be more discriminative than several gait 

stride parameters in differentiating different group of subjects. 

Among DL-based models, DCNN provided relatively poorer 

discriminating performance than the models that have LSTM in 

their network structure. This indicated that the temporal 

structure of a VGRF time series learned by LSTM was more 

important than the spatial features between multiple sensing 

points learned by CNN. However, we must admit that 8 sensing 

points under each foot may be relatively few in number to 

provide very discriminative spatial features. We also noted that 

DCNN had only two layers, which was a relatively shallow 

network. To find whether a deeper CNN can improve the 

classification performance substantially, a five-layer CNN was 

also constructed in our experiments, and the obtained accuracy 

for binary classification problem and severity rating problem 

on the merged dataset was 97.32%, and 96.65% respectively. 

Though the performance has been improved, it was still slightly 

poorer than the performance obtained by those LSTM-based 

models. At the same time, such a result also indicated that it 

was important for CNN to learn abstract discriminative features 

from several concurrent VGRF time series measured at 

multiple sensing points. Therefore, a combination of CNN 

(learning the interconnections between different sensing points) 

and LSTM (learning the interdependence between adjacent 

context observations) should perform better than a separate 

CNN or LSTM for gait characterization. Such a hypothesis was 

supported by our experimental results since DCALSTM, 

DCLSTM, and CNN-LSTM obviously performed better than 

DCNN and DALSTM. In the end, the superiority of attention 

mechanism was demonstrated by the compassion between 

DCALSTM and DCLSTM, where DCALSTM performed 

consistently better than DCLSTM in all experiments. 

In the future, more related investigations should be 

performed in the following aspects. First, the current dataset 

only provides VGRF data measured from 8 positions during 

walking. Though these positions are very important in 

capturing the gait kinetics, it is apparent that if more sensors are 

deployed underneath the foot, then the measured VGRF with 

higher spatial resolution (i.e., the plantar pressure distribution) 

can provide more discriminative information for characterizing 

different gaits [46, 47]. As for the proposed DCALSTM model, 

if the plantar pressure distribution is fed into the model, the 

spatial feature that learned will be more robust due to the 

increase of the force spatial resolution. Furthermore, the current 

dataset only provides vertical GRF. In fact, the medial-lateral 

and anterior-posterior GRF are also very useful in 

characterizing different gaits [48]. Therefore, it is expected that 

better performance can be obtained if they are included as the 

input to our model. Second, the proposed dual-modal model 

doesn’t consider the concurrent coordination of left and right 

limb during walking. That is, by separating the left and right 

gait and then modelling respectively, our model doesn’t 

consider the concurrent connection of left and right gait by 

viewing them as a whole, which should also be very important 

in characterizing gaits. Such importance can well explain why 

the LSTM model proposed in [25] can obtain very high 

classification accuracy by feeding the concatenated left and 

right gait data as a single vector into the model even without 

gait cycle detection. In fact, we can also add another channel 

into the proposed DCALSTM to model the left and right gait as 

a whole in a gait cycle. However, such a network design will 

complicate our model and may lead to the difficulty of training. 

Third, in the current study, only one walking cycle was utilized 

to determine whether a subject is a PD patient or his/her H&Y 

score. The score provided by the softmax classifier for specific 

class should obey certain probability density function (pdf). 
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Therefore, if the score for a specific data sample locates at the 

intersection part of the pdfs for two classes, then there is high 

uncertainty about the correct prediction of the class that the data 

sample belongs to [35]. To alleviate this kind of 

indetermination, it is better to jointly consider the scores from 

successive walking cycles. Hence, if we can estimate the pdf of 

the scores of specific class, the final decision can be made since 

it is reasonable to assume the output scores are independent and 

identically distributed. 

VI. CONCLUSION 

We have proposed a dual-modal attention-enhanced deep 

learning model for gait classification and H&Y scale rating of 

PD patients. The effectiveness of the proposed model was 

evaluated on three datasets via a 5-fold cross-validation method. 

In terms of accuracy, the best result for the problem of 

differentiating PD patients from normal COs was obtained on 

the Ga dataset [26], where a sensitivity, specificity, and 

accuracy was 99.35%, 99.23%, and 99.31% respectively. For 

the problem of classifying PD patients with different H&Y 

scores, the best result was obtained on the Si dataset [24] with 

an accuracy of 99.01%. These results indicate that the proposed 

model, if trained with more clinical gait data samples, has the 

potentials to provide better ratings of the PD patients, which is 

very helpful for the clinicians to make a better rehabilitation 

program. 
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