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Highlights 

This study describes in detail the metabolic effects of IBDV on DF-1 cells. 

A method is proposed to verify metabolite analysis using statistical strategies. 

An optimized medium is proposed to produce IBDV vaccines based on DF-1 cells. 

 

Abstract: Infectious bursal disease (IBD) caused by IBD virus (IBDV) is highly contagious viral and 

vaccination in chicken embryo has been an effective mean to prevent acute infection. However, the 

current production of IBDV vaccine faces serious batch instability and external contamination. The 

chicken embryonic fibroblast cell line DF-1 is widely used for the proliferation of avian viruses and 

vaccine production. Thus, optimizing the production of IBDV by DF-1 cells has an important application 

value. Combining metabolomics analysis and a Design of Experiments (DOE) statistical strategy, this 

study successfully optimized the process of IBDV production by DF-1 cells. Differential analysis and 

time series analysis of metabolite data in both IBDV-infected and uninfected DF-1 cells were performed 

by multivariate statistical analysis. The results showed that the intracellular metabolite intensities of 

glycolysis, the pentose phosphate pathway, the nucleoside synthesis pathway, lipid metabolism, and 

glutathione metabolism were upregulated, and the TCA cycle underwent a slight downregulation after 

IBDV infection of DF-1 cells. Based on the metabolome results and DOE statistical optimization method, 

the additive components suitable for IBDV proliferation were determined. The IBDV titer increased by 

20.7 times upon exogenous addition of cysteine, methionine, lysine and nucleosides in the control 

medium, which is consistent with the predicted result (20.0 times) by a multivariate quadratic equation. 

This study provides a strategy for the efficient production of IBDV vaccines and could potentially be 

utilized to improve the production of other viral vaccines and biologics. 
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1 Introduction 

Infectious bursal disease (IBD), caused by infectious bursal disease virus (IBDV), is a highly 

contagious viral and acute infection with tropism for lymphoid tissue that has been striking chicken flocks 

for more than fifty years and exerting a considerable economic impact on the global poultry industry 

(Muller et al., 2003). IBDV, a small molecule and non-enveloped virus, belongs to the genus 

Avibirnavirus of the Birnaviridase family with a nonenveloped icosahedral capsid (55-60 nm in diameter) 

containing a double-stranded RNA genome consisting of two segments (A and B) (Ingrao et al., 2013). 

Vaccination is the main approach to prevent and treat IBDV. Although various vaccine forms, such as 

subunit vaccine (Liu et al., 2005), DNA vaccine (Hulse and Romero, 2004), and genetically engineered 

live IBDV vaccines (Noor, 2009), have been developed due to technological innovation, conventional 

live and inactivated IBDV vaccines are still widely used (Muller et al., 2012). However, the virus 

propagation is performed in chicken embryos with the risk of batch instability and external pollution, 

and the embryo lethal dose50 (ELD50) of the obtained IBDV ranged from 10-4.50/0.4 ml to 10-7.40/0.4 ml 

(Li et al., 2015). Chicken embryo fibroblasts (CEF) cells are used for IBDV reproduction, but they have 

a finite in vitro life span and the preparation of the cells is high cost, and tedious, laborious. The obtained 

IBDV titer from CEF cells is approximately 6.3 TCID50/0.1 ml, while it was approximately 7.3 

TCID50/0.1 ml from DF-1 cells (Rekha et al., 2014). Therefore, DF-1 cells become a prospective cell 

line of avian origin to replace CEF for continuous demands. 

The chicken embryonic fibroblast cell line DF-1 has been widely applied in the production of 

several avian virus vaccines due to the lack of endogenous fragments associated with avian leukosis virus 

and sarcoma virus (Schaefer-Klein et al., 1998), such as Marek's disease virus (Levy et al., 2005) and 

avian influenza virus (Lee et al., 2008; Moresco et al., 2010). Increasing attention has been paid on the 

interactions between avian viruses and their host cells. Niu et al. and Luo et al. studied the transcriptomic 

changes of DF-1 cells inoculated with avian reovirus (Niu et al., 2017) or avian influenza virus (Luo et 

al., 2018) to further understand the antiviral response and phenotypes of histopathological changes of 

DF-1 cells after viral infection. Chen et al. performed small RNA deep sequencing in Newcastle disease 

virus-infected DF-1 cell to reveal that cellular miRNAs affect virus replication by controlling host-virus 

interaction (Chen et al., 2019). Those studies investigate the interaction between the virus and host DF-

1 cells on the molecular level, while this study will further understand the actual behavior of virus-

controlled DF-1 cell from the perspective of metabolic regulation.  

Metabolome has been widely used in the field of industrial biotechnology in recent years (Dietmair 

et al., 2012a; Guan et al., 2014; Wang et al., 2015). Metabolites can indicate the phenotypes of the actual 

process, which means small changes in gene expression or protein activity often induce a larger change 

in metabolites, and then the metabolites changes are responsible for cell or tissue behavior directly whilst 

also influencing proteome and transcriptome (Dietmair et al., 2012b; Klein and Heinzle, 2012). Therefore, 
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metabolome can provide a large amount of information about the definitions of biological process 

phenotypes and biosystems. In recent years, the application of metabolite analysis methods to study the 

effects of viral infection on cell metabolism has become more widespread. Munger et al. have used LC-

MS analysis to study changes in the cellular metabolite levels after human cytomegalovirus (HCMV) 

infection of human fibroblasts, demonstrating that HCMV significantly disrupts cellular metabolic 

homeostasis and institutes its own specific metabolic program (Munger et al., 2006). Since then, 

increasingly more studies have shown that viral infections activate many cellular metabolic processes 

(Hollenbaugh et al., 2011; Vastag et al., 2011). With the continuous innovation of detection technology, 

the metabolome is increasingly more widely used in virus-induced disease research—for example, to 

identify therapeutic targets for viral-induced diseases (Delgado et al., 2012), establish appropriate cell 

disease research models (Cui et al., 2017), and investigate the effects of drugs on viral-induced diseases 

(Beale et al., 2019). However, application of the metabolome in viral vaccine production has rarely been 

reported (Silva et al., 2016). Combing the analysis results of the metabolome with the design of 

experiments (DOE) methodology which has been verified before (Lin et al., 2019), we have already 

obtained an optimized medium suitable for virus propagation, which provides a potential strategy for the 

optimization of the production of the virus vaccine. 

In this study, we investigated the changes in the intracellular metabolites between DF-1 cells 

infected by IBDV and the control cells as well as the time series analysis of DF-1 intracellular metabolites 

after IBDV infection to understand the metabolic changes of DF-1 cells after IBDV infection. On one 

hand, the metabolomics research will provide informative insights into the prevention and treatment of 

IBDV. On the other hand, in our previous study, we observed that amino acid metabolism and lipid 

metabolism exerted important effects on the growth of DF-1 cells based on the intracellular metabolome 

of DF-1 cells in different media (Lin et al., 2019), so we investigated metabolite changes in DF-1 cells 

infected by IBDV to further understand the relationship between virus and host DF-1 cells on the 

metabolic level in this study. The statistical analysis of the metabolite results would reveal the key 

components affecting the reproduction of IBDV in DF-1 cells, which provides clues for the optimization 

of the virus production medium and thereby efficient production of the IBDV vaccine. 

2 Materials and methods 

2.1 DF-1 and IBDV culture 

Routine cell culture of adherent DF-1 cells was performed in Nunc EasYFlask 25-cm2 flasks (Thermo 

Scientific, USA) with 5 mL of DMEM/F12 (1:1) (Gibco, USA) with 5% fetal bovine serum (Biological 

Industries, USA) in a humidified incubator at 37 ℃ with 5% CO2. The cell number and viability were 

determined using Countstar (ALIT Life Science, CN), an automated Trypan blue cell counter. DF-1 cells 

were infected with IBDV in flasks when the cells reached a confluence of 90%, and the cells were 

harvested when 80% of the cells showed lesions, followed by determination of the virulence using 
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TCID50. 

TCID50 assay was performed as previously described (Chen et al., 2018; He et al., 2016). 

Monolayers of DF-1 cells in 96-well plates was infected with 0.1ml of 10-fold serial dilutions (10-1-10-

10) of viral samples. Six replicate wells of a 96-well cell culture plate were used for each dilution. The 

cytopathic effect (CPE) characterized by cytoplasmic, cell rounding, detachment and lysis was observed 

under a microscopy and the titrations were calculated as a 50% tissue culture infective dose (TCID50) 

using the Reed-Muench method (Reed and Muench, 1938). The relative titer was calculated as the 

following equation: 

Relative Titer=10[log10(TCID50,sample)-log10(TCID50,control)] 

where TCID50, control is the average virus titer at 36 hpi in control media, and TCID50, sample is the sample 

virus titer. 

2.2 Metabolite sample acquisition, detection and analysis 

For metabolome analysis of global biochemical profiles, the cells were cultivated in Nunc 

EasYFlask 75 cm2 with 15 mL of medium and were infected by IBDV when the cells reached a 

confluence of 90%. A total of 107 cells was harvested and stored at -80℃ immediately after washing in 

ice-cold phosphate-buffered saline, and three of these samples were used to determine the intracellular 

metabolites at each time point (t=6, 12, 18, and 36 hours post infection, hpi). Additionally, metabolite 

determination was performed by Metabolon, Inc. (Durham, NC) using standard protocols. Metabolon 

developed a platform that integrates chemical analysis, metabolite identification and relative 

quantification, data reduction, and quality assurance components of the process. Individual cell samples 

(n=3 per group) were extracted and split into equal parts for analysis by GC/MS and UPLC-MS/MS. The 

methodology is detailed elsewhere (Lawton et al., 2008). Prior to statistical analysis, the data obtained 

were normalized to the protein concentration by Bradford analysis. All identified metabolite relative 

abundance matrices were uploaded on MetaboAnalysis (http://www.metaboanalyst.ca) for multivariate 

data statistics and Pathway Analysis (Chong et al., 2018; Xia and Wishart, 2016). 

2.3 DOE methodology 

In this study, the experimental design was used to optimize the virus production medium based on 

the metabolome. First, the Plackett-Burman design (PBD) was used to screen the components that 

significantly influenced the target (IBDV titer). Second, the path of the steepest ascent design was used 

to determine the component concentration ranges. Third, the Box-Behnken Design (BBD) was used to 

determine the final concentration in the optimal media. Finally, the effectiveness of the optimized 

medium was determined in a verification experiment. The experimental method design matrix, including 

PBD and BBD, and the significance analysis of the restrictive analysis of the experimental data, were 

performed by Design Expert 10.0.6. 

2.3.1 Plackett-Burman design 
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In this study, PBD was used to screen the factors that significantly affected cell growth from 

nineteen metabolites to harvest the maximum IBDV titer and was classified into 8 categories, as listed in 

Table 3 according to possible pathways. Each variable was tested at two levels—high (+1) and low (-

1)—which were initially experimentally estimated in DMEM/F12 (1:1). In summary, eleven independent 

variables (eight of the abovementioned variables and three dummy variable) were screened by twelve 

trial runs according to PBD with N=11. Further details regarding the PBD matrix are listed in Table 4. 

2.3.2 Path of the steepest ascent design 

The path of the steepest ascent design was designed to identify the optimal range of values. The 

three most significant factors were obtained from the PBD experiment and their center points were 

determined by the path of the steepest ascent design for response surface analysis. More details are listed 

in Table 5. 

2.3.3 Box-Behnken design 

Response surface analysis applied BBD to evaluate the effects of three independent variables on 

cell growth to achieve an increased maximum IBDV titer. Using the other factors maintained in 

DMEM/F12 (1:1), we studied the three significant variables at the three coded levels: high (+1), 

intermediate (0) and low levels (-1). To determine the optimum values for the three selected variables, 

15 trial runs were designed by BBD and included 3 replicates. The experimental matrix, including the 

experimental and predicted results, is provided in Table 6. 

The following second-order polynomial model fits the relationship between the response and test 

variable. The equation obtained using statistical methods is as follows: 

Y=β0+∑βi

3

i=1

Xi+∑βii

3

i=1

Xi
2+∑ ∑ βij

3

j=i+1

2

i=1

XiXj 

where Y is the predicted response, and β0, βi, βii, and βij are the constant, linear coefficient, quadratic 

coefficient and interaction coefficient, respectively. Xi and Xj are the independent variables. 

2.3.4 Validation of the fitting model 

The second-order polynomial described above was used to direct the experiment to validate the 

fitted model. IBDV was cultured in optimized medium to validate the optimization results using the 

statistical strategy for the maximum IBDV titer as the targets compared with cells cultured in DMEM/F12 

(1:1) medium as the control. 

2.4 Method matrix and ANOVA 

The experimental method matrix was designed throughout the process, including by PBD and BBD, 

and restricted analysis of all the experimental data was performed using Design Expert 10.0.4 (Stat-Ease 

Inc., Minneapolis, USA). The statistical significance of the variables was evaluated by applying analysis 

of variance (ANOVA) using Student’s t-test. The adequacy of the model was verified using Fisher’s F-

test. 
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3 Results and discussion 

3.1 Metabolome differential and time series analysis based on multivariate statistical analysis 

When DF-1 cells were cultured to a confluency of approximately 80%, spent medium was replaced 

by fresh DMEM/F12(1:1) medium containing 1% fetal calf serum and IBDV was inoculated. The control 

group was treated with an equivalent of phosphate buffer solution instead of IBDV. Cell counting was 

performed every 6 hours. DF-1 cell growth was significantly changed after inoculation with IBDV (Fig. 

1A). In the control group without IBDV, the cells still grew normally. In the experimental group 

inoculated with IBDV, after a short-term increase of 6 hours, the cells began to show a significant 

downward trend, and the growth difference between the experimental and control groups became 

increasingly larger. According to the principle of “no obvious difference”, “beginning difference”, 

“differential difference beginning to be obvious” and “maximum difference”, and the time node of IBDV 

infection and replication process reported in the reference (Hui and Leung, 2015), the four time points 

of 6 hpi, 12 hpi, 18 hpi and 36 hpi were selected to investigate the effect of IBDV infection on the 

intracellular metabolites of DF-1 cells. 

3.1.1 Multivariate statistical analysis of intracellular metabolites in DF-1 cells inoculated with IBDV and 

the control group 

According to the cell growth changes after IBDV infection and time of virus infection and 

replication, ten million cells were collected at 6 hpi, 12 hpi, 18 hpi and 36 hpi. Metabolite group detection 

was performed using three parallel groups at each time point. The experimental process covered IBDV 

infection, replication, assembly and secretion. In total, 193 intracellular metabolites were determined and 

included amino acids, peptides, carbohydrates, lipids, nucleotides, coenzymes and vitamins. LC/MS and 

GC/MS were used for analysis to ensure the accuracy of the results. The principal component analysis 

(PCA) results (Fig. 1B) showed that the structure and quality of the data represented the close relationship 

among the biological repeated groups. The samples were distinguished between the experimental and 

control groups along the sampling times, indicating that the metabolite group could monitor the culture 

process of virus-infected cells. According to the principle of “no significant difference at 6 hpi, difference 

occurred at 12 hpi, 18 hpi, and significant difference at 36 hpi”, statistical analysis was performed on the 

experimental and control groups at each time point. We used fold change values (FC, no IBDV/IBDV) 

and p values to evaluate each metabolite. When the fold change value range was less than 0.5 or greater 

than 2, and the p value was less than 0.1, 14 different metabolites were obtained (Table 1). The metabolic 

pathways in which these 14 metabolites were mainly involved include the carbohydrate, lipid, amino 

acid, vitamin and cofactor relative pathways. When the FC value was lower than 0.5, the intracellular 

metabolite levels of glycerol 3-phosphate, GPC, citrulline, fructose, and glucose were significantly 

higher in DF-1 cells inoculated with IBDV than in DF-1 cells without IBDV. These metabolites were 

mainly involved in lipid metabolism, arginine, proline metabolism, and carbohydrate metabolism in DF-
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1 cells. Other metabolites were significantly downregulated in DF-1 cells infected with IBDV and were 

involved in the glycine, serine, and threonine metabolic pathways, pantothenic acid and CoA metabolic 

pathways, lysine metabolic pathways, pentose metabolic pathways, and some carbohydrate-related 

pathways. To determine the important roles of arginine, proline, glycine, serine, threonine and lysine in 

the propagation of IBDV, further analysis would be carried out by DOE methodology. 

3.1.2 Time series analysis of intracellular metabolites of DF-1 cells infected by IBDV 

The time-series intracellular metabolites of DF-1 cells infected with IBDV were analyzed to 

investigate the metabolites or metabolic pathways in DF-1 cells after IBDV infection. Using the 

metabolites of DF-1 cells infected with IBDV at 0 hpi, the metabolite samples of 5 time points was used 

to investigate changes in the intracellular metabolites before and after IBDV infection. We used 

hierarchical cluster analysis in 5 sample groups (Fig. 1C). The result between the 0 hpi and 6 hpi samples 

was not significantly different because IBDV had just started to infect DF-1 cells. Partial Least Square 

analysis (Fig. 1D) identified 15 metabolites with the highest-ranking calculated VIP. The intracellular 

intensity of xylitol, inosine, malate, gluconate, erythronate, proline, hypoxanthine, glucuronate, N-

carbamoyl-aspartate, fumarate, and N-acetylserine gradually decreased with virus propagation, while the 

intracellular intensity of cysteine, glycerol 3-phosphate, and glycerophosphorylcholine GPC gradually 

increased. The gradually decreasing metabolites were mostly involved in glycogen synthesis, the pentose 

pathway and nucleoside metabolism. The intracellular intensity of glucose gradually increased with time, 

indicating that the glucose utilization pathway changed. Additionally, the increase in the intensity of 

metabolites associated with lipid metabolism pathways emphasized the important roles of lipid 

metabolism in the process of virus reproduction. 

With further analysis of the metabolic pathways of intracellular metabolites in DF-1 cells infected 

with DF-1 cells over time, the significant metabolites were integrated into the KEGG pathway database, 

and the resulting "metabolome view" showed all the significant pathway by pathway abundance analysis 

based on p-value (Table 2). Through the pathway analysis of pathways, the metabolic pathways with 

significant differences according to the time (p<0.01) and impact over 0.18 were selected. The results 

showed that the importance of amino acid metabolism, especially that of arginine, proline, cysteine, 

methionine, alanine, aspartic acid, glutamine, glycine, serine, threonine, histidine and lysine. 

Additionally, carbohydrate-related metabolism, lipid metabolism, and nucleoside metabolism changed 

significantly, which was consistent with the differential analysis and time series analysis of metabolites 

above mentioned. 

3.2 Effect of IBDV infection on the metabolic pathway of DF-1 cells 

Multivariate statistical analysis of the intracellular metabolites of DF-1 cells infected by IBDV 

showed that IBDV affected the metabolism of DF-1 cells via multiple metabolic pathways, including 

central carbon metabolism, nucleoside metabolism, lipid metabolism, glutathione metabolism, and 
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amino acid metabolism. 

3.2.1 Central carbon metabolism 

Differential analysis and time series analysis showed significant changes in carbohydrate 

metabolism. Many studies have reported that viruses alter the metabolic state of cells, including 

glycolysis and nucleotide biosynthetic pathways (Munger et al., 2006). In this study, intracellular glucose 

uptake was significantly increased after IBDV infection, and glycolysis-related metabolites increased at 

12, 18, and 36 hpi (Fig. 2). Compared with no IBDV infection in DF-1 cells, the intracellular intensity 

of glucose, glucose-6-phosphate, fructose-1, 6-diphosphate (Isobar), DHAP, 3-phosphglycerate and 

lactate significantly increased after IBDV infection, and the difference reached a peak at 36 hpi.  

Regarding the pentose phosphate pathway, the intracellular intensities of the pentose phosphate 

pathway intermediate metabolites ribose-5-phosphate, ribulose/xylulose-5-phosphate, and ribose in 

IBDV-infected DF-1 cells were significantly higher than those in control cells, indicating that the pentose 

phosphate pathway played an important role in the proliferation of IBDV in DF-1 cells (Fig. 2). The 

pentose phosphate pathway provides precursors for nucleotide synthesis, which may imply an important 

function of nucleotide metabolism in the reproduction of IBDV. 

The TCA cycle is very important for the energy production of cells. However, the intermediate 

metabolite intensities of α-ketoglutarate, succinate, fumarate, and malate were decreased in IBDV-

infected DF-1 cell compared with those in the control group, indicating that IBDV propagation in DF-1 

cells was less dependent on the TCA cycle where the carbon flux of glucose was reduced but in other 

metabolic pathways was increased (Fig. 2). Considering the intracellular metabolite pools changes in the 

glycolysis and the TCA cycle, the energy metabolism of DF-1 cells was changed after IBDV infection. 

In this study, we found that IBDV infection promoted glycolysis in DF-1 cells by metabolome 

analysis, while Quan et al. analyzed the transcriptome in vvIBDV infected with B. lymphoblastic DT40 

cells to find that the MAPK p38 signaling pathway was significantly upregulated, inhibiting the 

PI3K/Akt/mTOR signaling pathway (Quan et al., 2017) and implying that Aktl1 inhibited glycolysis by 

inhibiting GLUT1 expression. This may be because DT40 cells, as lymphocytes, sustained long-term 

infection (Delgui et al., 2009), while IBDV infection in DF-1 cells was acute and intense. Thus, IBDV 

has different effects on glycolysis in different cells, which had a similar phenomenon of HIV-infection 

in CD4+ T cells and macrophages (Hollenbaugh et al., 2011). 

3.2.2 Lipid metabolism 

In differential and time series analyses, we found that most of the lipid metabolites were increased 

significantly with the proliferation of IBDV in DF-1 cells, particularly glycerophospholipid metabolism 

(p=1.89×10-9, impact = 0.24; Table 2) and sphingolipid metabolism (p = 6.80 × 10-7, impact = 0.30, Table 

2). Compared with the corresponding metabolite levels in the control group, the levels of metabolites in 

DF-1 cells with IBDV infection increased significantly over time, especially at 36 hpi (Fig. 3). 

Jo
ur

na
l P

re
-p

ro
of



Metabolome analysis showed that IBDV induced significant upregulation of most intracellular 

lipid-related metabolic pathways in DF-1 cells. IBDV is a non-enveloped RNA virus; however, lipid 

metabolism is still important for IBDV to multiply in DF-1 cells. It was reported that the metabolism of 

glycerophospholipids was related to the replication of viruses. The progeny reproduction of some viruses 

is formed between the endoplasmic reticulum and lipid droplets and requires the host to provide a large 

amount of triacylglycerol to form a lipid membrane, making a compartment for the replication and 

synthesis of viral RNA (Sanchez and Lagunoff, 2015; Schaefer and Chung, 2013). Additionally, the 

intracellular intensities of DHAP (Fig. 2) and glycerol 3-phosphate (Fig. 3) were upregulated in DF-1 

cells infected by IBDV. The virus was reported to switch DHAP to G3P in a shuttle pathway catalyzed 

by glycerol-3-phosphate dehydrogenase (GPDH), which shifted the carbon metabolism to the synthesis 

of glycerophosphoric acid (Schoeman et al., 2016). The activity of sphingolipid metabolism further 

proved that sphingolipid metabolism was involved in the de novo synthesis of lipid rafts. Additionally, 

inhibition of sphingolipid metabolism led to inhibition of the replication of HCV in its interaction with 

infected cells (Hirata et al., 2012; Sakamoto et al., 2005). Hui et al. used RNA-Seq to detect transcriptome 

changes in caIBDV-infected DF-1 cells, and found that lipid membrane-associated regulatory factors 

LIPA and CH25H were overexpressed, while STARD4, LSS, and AACS were inhibited, altering the cell 

membrane fluidity and rearranging the lipid rafts of infected cells to ease the entry of IBDV into DF-1 

cells (Hui and Leung, 2015) and facilitate the assembly and budding of viral particles (Yip et al., 2012). 

Therefore, changes in lipid metabolism not only facilitate the entry of IBDV into cells but also provide 

a suitable environment for the replication of IBDV. 

3.2.3 Amino acid metabolism 

Amino acids are highly abundant metabolites in cells and the main components of protein synthesis. 

We found that the intensities of many amino acids, including cysteine, lysine and methionine, involved 

in many metabolic pathways were changed in the metabolome (Fig. 4 A-C). For example, cysteine is 

involved in the synthesis of glutathione, and methionine involves in the formation of nucleosides (Avila 

et al., 2004; Conrad, 2014; ŽIvkov BaloŠ et al., 2019). The significant differences in the metabolic 

pathways of cystine and methionine indicate the important role of the relevant pathways. Additionally, 

glutamine, asparagine, alanine, serine, and threonine were reported to be beneficial for maintaining the 

genetic stability of the IBDV capsid protein VP2 in continuous passage in chicken embryo fibroblasts 

(CEFs) (Noor et al., 2014). In the above-mentioned time series analysis and differential analysis, the 

amino acid metabolism showed important roles. 

Additionally, we found that glutathione-related metabolite pools gradually increased with the 

proliferation of IBDV in DF-1 cells (p=4.9×10-9; Impact=0.59; Table 2), and the increase in the cysteine 

pool induced by IBDV suggested the importance of glutathione metabolism. Fig. 4D shows that the 

intensity of most glutathione-related metabolites was significantly upregulated with IBDV proliferation 
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in DF-1 cells, and the difference between the experimental and control group reached a peak at 36 hpi. 

When we compared the intermediate metabolites of glutathione synthesis, cysteine-glutathione disulfide, 

cysteinylglycine, and 5-oxoproline in the experimental and control groups, the intensities of these 

metabolites increased after IBDV infection, indicating that IBDV stimulates the glutathione-related 

metabolic pathway related to oxidative stress when it was propagated in DF-1 cells and may play 

important roles in redox homeostasis, cell apoptosis (Li et al., 2019), and the phosphorylation state of 

various enzymes (Xiong et al., 2017) after IBDV infection in DF-1 cells. 

3.2.4 Nucleoside metabolism 

The metabolome analysis results showed that the numbers of intracellular DL-1 cells infected with 

IBDV, nucleosides and their synthetic precursors in the experimental group were generally higher than 

those in the control group (Fig. 5A), and a significant increase in intercellular pentose phosphate pathway 

metabolite pools was mentioned above, illustrating the important role of nucleoside synthesis for viral 

reproduction. IBDV induced a significant increase in the nucleoside synthesis metabolite pools in DF-1 

cells, and the methionine pool increased to facilitate the methylation of nucleosides and mature 

nucleoside synthesis, as confirmed by the increased levels of intracellular methionine sulfoxide and S-

adenosylmethionine (SAM) pools (Fig. 5 B-C). Lin et al. used microarray to detect the transcriptome of 

IBDV-infected chicken dendritic cells and found a large enrichment of RNA polymerase II(Lin et al., 

2016), indicating an increase in intracellular RNA metabolite pools was necessary for IBDV proliferation. 

3.3 Optimization of IBDV propagation medium based on metabolite analysis and the DOE method 

Based on intracellular metabolite differential analysis and time series analysis of IBDV-infected 

DF-1 cell, amino acids, nucleosides, carbohydrate and lipid-related metabolic pathways were identified 

as the significant pathways in IBDV proliferation. However, since DF-1 cells have limitations in glucose 

uptake as the previous experimental results (data not shown), optimizing the concentration of glucose in 

the medium has no significant effect on IBDV propagation. In terms of lipid-related metabolic pathway, 

the mixture of lipids or triacylglycerol were considered as the exogenous lipid supplements, but those 

lipid components were dissolved in ethanol which has serious toxic effects on DF-1 cells. In the 

experimental medium, fetal bovine serum was the lipids provider and a small amount of serum were 

reported to be benefit to virus production (Liste-Calleja et al., 2014; Shen et al., 2012), and the current 

serum content was considered to satisfy the IBDV proliferation. Therefore, in our DOE experiments, 

amino acids and nucleosides-related components were optimized. 

In the DOE experiments, components that might promote IBDV virus propagation in DF-1 cells 

were classified according to their constituent properties and pathways with similar function in the KEGG 

pathway database. Table 3 shows the optimized medium components (Table 3) and coding level for PBD. 

To obtain the maximum IBDV titer, PBD was performed on the eight components or groups obtained in 

the above analysis. The experimental design and results are shown in Table 4. The resulting restricted 
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model, with a P value of 0.0371 and an F value of 4.62, indicated that the model was of good predictive 

ability. The amino acid 6 (cysteine and methionine) group significantly affected the IBDV titer, and the 

amino acid 7 (lysine) and nucleoside groups also contributed significantly to the proliferation of IBDV 

in DF-1 cells (Table 3). Therefore, subsequent interactions among the three components or groups were 

further optimized to obtain an optimal medium that can promote IBDV production in DF-1 cells. 

The path of steepest ascent design is an experimental design method that optimizes the appropriate 

concentration step size of the components. The three most important factors obtained from the PBD 

experimental results were further optimized along the path of the steepest ascent to determine their center 

point and then were used in the response surface analysis. Based on the results of the PBD experiment, 

the amino acid 6 group, the amino acid 7 group and the nucleoside group had positive effects on IBDV 

proliferation in DF-1 cells. Therefore, the concentrations of the three groups moved along the path of 

increasing concentration. In total, 5 gradient levels were set, while the concentrations of the other 

substances remained at the basal level. The experimental design and results are shown in Table 4. When 

the concentrations of amino acid group 6, amino acid group 7 and nucleosides reached 0.4 mM, 0.00225 

mM and 1.25 mM, respectively, the harvested IBDV titers reached the highest level. Thus, these values 

were set as the central point of the subsequent BBD experiment. 

Based on the path of the steepest ascent design results, BBD was performed to identify the 

interactions among significant factors and determine the optimal level of the three significant factors. 

The design process and results are shown in Table 6 and Figure 6. Variance analysis of the restriction 

model showed that the F value of the model was 6.29, and p=0.028<0.05, indicating that the results based 

on the quadratic equation model to obtain the maximum virus titer were significant; the analytical 

coefficient was R2=0.9188, indicating the correlation between measured and predicted values was fitted 

well, and the Adj R2 results indicated that the model interpreted 77.27% of the variance. Although the 

individual effects of amino acid 6, amino acid 7 and nucleoside groups on the proliferation of IBDV in 

DF-1 cells were not all significant, the interaction effects and optimal levels of variables were determined 

by plotting the response surface curves. The interaction and optimization levels of the variables were 

determined according to the points of the response surface, and the correlation coefficient were obtained 

from the restriction analysis of the multivariate quadratic equation as follows: 

Relative Titer=19.7025 + 0.487966 × A + 0.482753 × B + 2.03346 × C + 0.90351 × AB + 2.29574 × AC  

-0.434905 × BC -5.51458 × A^2  -6.6997 × B^2 -4.5946 × C^2  

where A, B and C represent the coding levels of the amino acid 6 group, amino acid 7 group and 

nucleoside group, respectively. 

The three-dimensional analysis of the response surface indicates that the model has a maximum 

unique solution, as shown in Figure 6(ABC). The predicted highest virus titer was increased by 20.0 

times at amino acid 6=0.098, amino acid 7=0.034, nucleosides=0.245, and the corresponding component 
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concentrations were 0.410 mM, 0.002 mM and 1.311 mM, respectively. Compared with the control 

medium, the final IBDV titer increased by 20.7 times in the optimized medium (Fig. 6D, 36 hpi), 

consistent with the predicted result and indicating a significant improvement. The IBDV titer was 6.83 

TCID50/0.1 ml in control medium, and 8.14 TCID50/0.1 ml in optimized medium (36 hpi). At the same 

time, comparing the growth of DF-1 cells in the control and optimized medium, the reduction of the 

viable cell density caused by IBDV-induced cell death was slowed down in the optimized medium, which 

provided a more durable environmental and a better material and energy preparation for the IBDV 

propagation. Therefore, IBDV reproduction was significantly improved in the optimized medium. This 

result confirmed again the important roles of cysteine, methionine, lysine and nucleosides in IBDV 

proliferation in DF-1 cells. 

4 Conclusion 

This study demonstrated the metabolic effects of IBDV on DF-1 cells based on a metabolomic 

analysis system and multivariate statistical analysis, indicating that IBDV infection enhanced the 

intracellular metabolite intensities of glycolysis, the pentose phosphate pathway, the nucleoside synthesis 

pathway, lipid metabolism, and glutathione metabolism while decreased the intracellular intensities of 

the TCA cycle metabolites in DF-1 cells. Based on the DOE statistical optimization method, the medium 

suitable for IBDV reproduction was established. Compared with the control medium, IBDV reproduction 

in optimized medium was significantly improved, and the titer was increased by 20.7 times, similar to 

the predicted result (20.0 times), which emphasized the importance of cysteine, methionine, lysine, and 

nucleosides. This study provides a streamlined strategy to optimize the viral propagation medium based 

on the metabolome to promote IBDV vaccine production and could potentially be utilized in the 

improvement of other viral vaccines and biologics production. 
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Data 

Figure 1 

 

Differential and time series analysis of the metabolic profiles of the cultures. (A) Viable cell density 

of DF-1 cells infected with IBDV (IBDV) and without infection (no IBDV). (B) Three-dimensional 

principal component analysis (PCA) plot of 193 metabolite features. Comp.1 accounted for 29.47% 

of the variation among the eight groups, and Comp.2 accounted for 22.68%. DF-1 cells were mock 

infected (no IBDV, gray circle) or were virally infected (IBDV, green circle) for 6, 12, 18, and 36 

hpi. The cells were then harvested for metabolomic profiling, and three biological replicates of each 

group were provided. Application of PCA provided by Metabolon to determine the separation of 

individual samples as a function of cellular metabolites revealed fairly distinct separation between 

mock-infected cells and IBDV-infected cells at different time points, predicting a strong shift in the 

metabolic profiles among the two groups. (C) and (D) DF-1 cells were IBDV infected for 0, 6, 12, 

18, and 36 hours, and then were harvested for statistical analysis by MetaboAnalyst. Three 

biological replicates of each group were provided. (C) Hierarchical clustering displaying the feature 

expression pattern shown as a dendrogram (distance measure using Pearson’s correlation, and 

clustering algorithm using Ward.D clustering to minimize the sum of squares of any two clusters). 

DF-1 cells were IBDV-infected for 0, 6, 12, 18, and 36 hours. (D), Important features identified by 

PLS-DA. The colored boxes on the right indicate the relative concentrations of the corresponding 

metabolite in each group, and S1-S5 indicate the 5 sample groups from 0-36 hpi, respectively. 
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Figure 2 

IBDV-induced changes in central carbon metabolites. The line graph represents the metabolites that 

have undergone significant changes detected in glycolysis, TCA, and PPP. Replicate cultures of DF-

1 cells were mock-infected (no IBDV, solid square) or virally infected with IBDV (IBDV, open 

circle). Cells were harvested at 6, 12, 18, 36 hpi and were processed for GC-MS and UPLC-MS/MS. 

Raw area counts from three independent experiments performed in triplicate (n = 3) were 

normalized to protein levels. Error bars show ±1 s.d. of the mean. 
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Figure 3 

IBDV-induced changes in glycerophospholipid and sphingolipid metabolites. Glycerophospholipid 

and sphingolipid metabolite profiles of DF-1 cells mock infected or virally infected with IBDV at 

6, 12, 18, and 36 hpi were shown as a heatmap. Increased metabolite concentrations are shown in 

red, whereas decreased metabolite concentrations are shown in blue. 
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Figure 4 

IBDV-induced changes in amino acid metabolites. (A), (B), and (C) show a significant increase in 

cysteine, lysine, and methionine levels in cells infected with IBDV (IBDV, open circle) for 12, 18 

and 36 hours compared with uninfected controls (no IBDV, solid square). Raw area counts from 

three independent experiments performed in triplicate (n = 3) were normalized to protein levels. 

Error bars show ±1 s.d. of the mean. D shows the glutathione pathway metabolite profiles of DF-1 

cells mock-infected or virally infected with IBDV at 6, 12, 18, and 36 hpi were shown as a heatmap. 

Increased metabolite concentrations are shown in red, whereas decreased metabolite concentrations 

are shown in blue. 
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Figure 5  

IBDV-induced changes in nucleoside metabolites. (A) show purine and pyrimidine metabolite 

profiles of DF-1 cells mock-infected or virally infected with IBDV at 6, 12, 18, and 36 hpi and 

shown as a heatmap. Increased metabolite concentrations are shown in red, whereas decreased 

metabolite concentrations are shown in blue. (B) and (C) show a significant increase in the 

methionine sulfoxide and SAM levels in cells infected with IBDV (IBDV, open circle) for 12, 18 

and 36 hours compared with uninfected controls (no IBDV, solid square). Raw area counts from 

three independent experiments performed in triplicate (n = 3) were normalized to the protein levels. 

Error bars show ±1 s.d. of the mean. 
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Figure 6 

Three-dimensional curved surfaces of the mutual influence on IBDV propagation for three factors 

in BBD experiments and comparison of the production between optimized and control media. (A) 

Effects of nucleoside and Cys/Met groups; (B) effects of Lys and Cys/Met groups; (C) effects of 

Lys and nucleoside groups; (D) comparison of the IBDV propagation and the DF-1 cell growth 

between optimized and control media. N = 3 biological replicates, and error bars represent s.d. 
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Table 1 Intracellular differential metabolites and metabolic pathways involved in mock- or IBDV-infected DF-1 cell 

Component Style Sub Pathway 
12 hpi 18 hpi 36 hpi 

FC p.value FC p.value FC p.value 

glycerol 3-phosphate Lipid Glycerolipid Metabolism 0.43 0.0001 0.25 0.0003 0.11 0.0001 

glycerophosphorylcholine 

GPC 
Lipid Phospholipid Metabolism 0.27 0.0002 0.19 0.0001 0.1 0.0001 

glycine Amino Acid Glycine, Serine and Threonine Metabolism 2.58 0.0003 2.84 0.0009 2.66 0.0002 

xylitol Carbohydrate Pentose Metabolism 2.72 0.0009 11.26 0 14.96 0.0002 

gluconate Xenobiotics Food Component/Plant 2.31 0.0023 4.93 0.0024 4.25 0.0001 

pantothenate 
Cofactors and 

Vitamins 
Pantothenate and CoA Metabolism 2.29 0.0024 4.48 0.0001 2.36 0 

sorbitol Carbohydrate Fructose, Mannose and Galactose Metabolism 2.04 0.0038 4.89 0.0016 2.55 0.0008 

sarcosine Amino Acid Glycine, Serine and Threonine Metabolism 3.58 0.0072 4.1 0.0026 12.45 0.0008 

glucuronate Carbohydrate Aminosugar Metabolism 2.5 0.0111 4.46 0.0014 6.54 0 

citrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 0.4 0.0132 0.36 0.0026 0.17 0.0002 

cadaverine Amino Acid Lysine Metabolism 2.68 0.0219 11.93 0.0006 7.59 0 

fructose Carbohydrate Fructose, Mannose and Galactose Metabolism 0.38 0.0348 0.27 0.0086 0.09 0 

arabitol Carbohydrate Pentose Metabolism 2.54 0.0439 3.18 0.0919 2.92 0.0019 

glucose Carbohydrate 
Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 
0.45 0.0784 0.31 0.0041 0.26 0.0002 
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Table 2 Metabolic pathway analysis of DF-1 cells infected with IBDV 

Style Pathway a Raw p b Impact c 

Lipid Glycerophospholipid metabolism 1.89E-09 0.24 

Amino Acid Glutathione metabolism 4.91E-09 0.59 

Lipid Sphingolipid metabolism 6.80E-07 0.30 

Energy Citrate cycle (TCA cycle) 8.16E-07 0.26 

Amino Acid Arginine and proline metabolism 1.02E-06 0.52 

Carbohydrate Fructose and mannose metabolism 1.11E-05 0.24 

Cofactors and Vitamins Pentose phosphate pathway 1.54E-05 0.32 

Nucleotide Purine metabolism 2.06E-05 0.42 

Amino Acid Cysteine and methionine metabolism 4.40E-05 0.54 

Carbohydrate Starch and sucrose metabolism 5.32E-05 0.31 

Nucleotide Nicotinate and nicotinamide metabolism 2.80E-04 0.49 

Lipid Steroid biosynthesis 6.88E-04 0.35 

Amino Acid beta-Alanine metabolism 7.10E-04 0.45 

Amino Acid Alanine, aspartate and glutamate metabolism 7.87E-04 0.78 

Amino Acid Glycine, serine and threonine metabolism 1.28E-03 0.59 

Carbohydrate Pentose and glucuronate interconversions 1.29E-03 0.67 

Other Aminoacyl-tRNA biosynthesis 1.72E-03 0.19 

Carbohydrate Galactose metabolism 5.94E-03 0.48 

Nucleotide Pyrimidine metabolism 8.19E-03 0.30 

Amino Acid Histidine metabolism 9.06E-03 0.27 

Cofactors and Vitamins Pantothenate and CoA biosynthesis 1.31E-02 0.47 

Cofactors and Vitamins Ascorbate and aldarate metabolism 2.39E-02 0.20 

Amino Acid Lysine biosynthesis 2.65E-02 0.30 

Carbohydrate Amino sugar and nucleotide sugar metabolism 3.40E-02 0.20 

a The pathway analysis module uses KEGG metabolic pathways as the backend knowledgebase. 
b Raw p is the original p value calculated from the enrichment analysis based on GlobalTest. 
c Impact is the pathway impact value calculated from pathway topology analysis. 
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Table 3 Two coded levels of variables investigated using PBD and the contribution of components 

Term Group Components 
Concentration (mM) 

Effect % Contribution 
-1 1 

A amino acid 1 
arginine 0.6991 1.3981 

-0.92 4.49 
proline 0.1500 0.3000 

B amino acid 2 

glycine 0.2500 0.5000 

-0.51 1.37 serine 0.2500 0.5000 

threonine 0.4492 0.8983 

C amino acid 3 aspartate 0.0500 0.1000 0.17 0.15 

D amino acid 4 alanine 0.2500 0.5000 0.17 0.15 

E amino acid 5 glutamine 2.5000 5.0000 0.68 2.41 

F amino acid 6 
cysteine 0.0998 0.1995 

2.52 33.51 
methionine 0.1157 0.2314 

G amino acid 7 lysine 0.4986 0.9973 1.60 13.47 

H nucleotides nucleotides 0.0015 0.0030 1.77 16.43 
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Table 4 Matrix and experimental responses of PBD with N = 11 

Run a 

amino 

acid 1 

amino 

acid 2 

amino 

acid 3 

amino 

acid 4 

amino 

acid 5 

amino 

acid 6 

amino 

acid 7 
nucleotides dummy 1 dummy2 dummy3 Response  

A B C D E F G H J K L 
Relative 

titer 

1 1 1 -1 1 1 1 -1 -1 -1 1 -1 1.5 

2 -1 1 -1 1 1 -1 1 1 1 -1 -1 6.3 

3 1 -1 1 1 -1 1 1 1 -1 -1 -1 6.3 

4 1 -1 1 1 1 -1 -1 -1 1 -1 1 3.53 

5 1 1 -1 -1 -1 1 -1 1 1 -1 1 6.3 

6 -1 -1 -1 1 -1 1 1 -1 1 1 1 6.3 

7 -1 1 1 1 -1 -1 -1 1 -1 1 1 2 

8 1 1 1 -1 -1 -1 1 -1 1 1 -1 1.5 

9 1 -1 -1 -1 1 -1 1 1 -1 1 1 3.53 

10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 

11 -1 1 1 -1 1 1 1 -1 -1 -1 1 6.3 

12 -1 -1 1 -1 1 1 -1 1 1 1 -1 6.3 

a The levels in Table 4 are the same as those described in Table 3. 
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Table 5 Runs and responses of the path of the steepest ascent design 

Run 
Cys/Met Nucleosides Lys 

Relative Titer 
mM mM mM 

1 0.2 0.00175 0.75 2.00 ±0.23 

2 0.3 0.002 1 15.40 ±2.86 

3 0.4 0.00225 1.25 19.95 ±2.30 

4 0.5 0.0025 1.5 14.62 ±2.88 

5 0.6 0.00275 1.75 2.66 ±0.46 

 

 

Table 6 Matrix and experimental and predicted responses of BBD 

Run Level A: Cys/Met B: Nucleosides C: Lys Relative Titer 

  mM mM mM Predicted Experimental 

 -1 0.3 0.002 1    

 0 0.4 0.00225 1.25    

 1 0.5 0.0025 1.5    

1  0 0 0 19.7 20.45 ±3.67 

2  0 0 0 19.7 19.95 ±1.83 

3  0 0 0 19.7 18.70 ±1.74 

4  -1 0 -1 9.37 11.97 ±5.88 

5  -1 1 0 6.58 5.66 ±0.03 

6  -1 0 1 8.84 7.81 ±2.19 

7  0 -1 1 10.39 12.06 ±2.06 

8  1 0 1 14.41 11.82 ±3.52 

9  -1 -1 0 7.42 6.78 ±1.16 

10  0 1 -1 7.29 5.62 ±1.40 

11  1 -1 0 6.59 7.51 ±0.43 
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12  0 1 1 10.49 12.44 ±2.93 

13  1 1 0 9.36 10.00 ±1.25 

14  1 0 -1 5.75 6.78 ±1.16 

15  0 -1 -1 5.46 3.50 ±0.96 
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