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Abstract
Purpose Prenatal stress (PS) during pregnancy affects in utero- and postnatal child brain-development. Key systems affected 
are the hypothalamic–pituitary–adrenal axis and the autonomic nervous system (ANS). Maternal- and fetal ANS activity 
can be gauged non-invasively from transabdominal electrocardiogram (taECG). We propose a novel approach to assess 
couplings between maternal (mHR) and fetal heart rate (fHR) as a new biomarker for PS based on bivariate phase-rectified 
signal averaging (BPRSA). We hypothesized that PS exerts lasting impact on fHR.
Methods Prospective case–control study matched for maternal age, parity, and gestational age during the third trimester 
using the Cohen Perceived Stress Scale (PSS-10) questionnaire with PSS-10 over or equal 19 classified as stress group (SG). 
Women with PSS-10 < 19 served as control group (CG). Fetal electrocardiograms were recorded by a taECG. Coupling 
between mHR and fHR was analyzed by BPRSA resulting in fetal stress index (FSI). Maternal hair cortisol, a memory of 
chronic stress exposure for 2–3 months, was measured at birth.
Results 538/1500 pregnant women returned the questionnaire, 55/538 (10.2%) mother–child pairs formed SG and were 
matched with 55/449 (12.2%) consecutive patients as CG. Maternal hair cortisol was 86.6 (48.0–169.2) versus 53.0 (34.4–
105.9) pg/mg (p = 0.029). At 36 + 5 weeks, FSI was significantly higher in fetuses of stressed mothers when compared to 
controls [0.43 (0.18–0.85) versus 0.00 (− 0.49–0.18), p < 0.001].
Conclusion Prenatal maternal stress affects the coupling between maternal and fetal heart rate detectable non-invasively a 
month prior to birth. Lasting effects on neurodevelopment of affected offspring should be studied.
Trial registration Clinical trial registration: NCT03389178.

Keywords ANS · Bivariate phase-rectified signal averaging · BPRSA · Fetal autonomic nervous system · Fetal heart rate · 
Fetal stress index · FSI · Prenatal stress · PS

Introduction

Prenatal exposure to maternal psychosocial stress and anxi-
ety confers lifelong risk for behavioral alterations that last 
beyond childhood [1, 2]. Every fifth-to-fourth pregnant 
woman experiences such prenatal stress (PS) [3] which can 
impact on early behavioral, cognitive development, and tem-
perament in human infants, and increases child morbidity 

and neurological dysfunction [2, 4]. In a recent review, Van 
den Bergh et al. [2], conclude that numerous epidemiologi-
cal and case–control studies show neurodevelopmental dis-
orders in offspring exposed to maternal stress during preg-
nancy. Pregnant women that were exposed to psychosocial 
stress during the third trimester of pregnancy have infants 
(5–18 months of age) that show: less infant affective reactiv-
ity at 5 months [5], higher infant temperamental reactivity at 
6 months [6], positive association in infants with high res-
piratory sinus arrhythmia at 8–10 months [7], higher infant 
negative affectivity at 24 months [8], and higher reaction 
intensity in children at 24–30 months [9], implying that the 
main outcome is at the cognitive- and temperamental levels.

Considering the difficulty to differentiate the concept of 
stress (including the psychological assessment of perceived 
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stress) from anxiety, we will employ the term ‘psychosocial 
stress’ to refer to maternal general- and pregnancy-specific 
stress and anxiety throughout this study [10, 11]. The mech-
anisms of the psychosocial stress response can be divided 
into an acute response, which involves the rapid activation 
of the autonomic nervous system (ANS), and a delayed 
response mediated by the hypothalamic–pituitary–adrenal 
(HPA) axis. The neurally mediated ANS responses enable 
precise adjustments of target organs within seconds, while 
the HPA’s slow response results in peak levels of cortisol 
within 10–30 min after acute stressor [12]. Most impor-
tantly, these maternal stress responses shape the develop-
ment of the infant’s stress response system, a phenomenon 
referred to as “fetal programming”. Although this field still 
faces the challenge of thoroughly understanding the under-
lying pathophysiological mechanisms [13] the HPA/ANS 
responses are still considered to be the main mechanism by 
which prenatal exposures influence human-postnatal devel-
opment [14]. The quest for finding a prenatal measure that 
might have a preventive clinical significance [15] has led us 
to hypothesize that the coordinated roles of the ANS and the 
HPA in the integrated stress response can be monitored non-
invasively using electrocardiogram (ECG) and ECG-derived 
maternal- and fetal heart-rate (mHR, fHR). The relationship 
between mHR and fHR might provide important information 
about the functional status of fetal ANS [16]. In a prospec-
tive cohort of late-gestation women, we tested whether a 
new biomarker measuring the coupling of mHR and fHR 
can predict the preceding chronic exposure of mothers to 
stress. Herein, we propose a novel analysis method of cou-
pling between mHR and fHR based on a signal-processing 
algorithm, first applied in adult cardiology, termed bivari-
ate phase-rectified signal averaging (BPRSA) [17, 18] and 
applied to trans-abdominally acquired fetal ECG (fECG). 
This method overcomes the limitation of non-stationary sig-
nal and background noise typical for fHR signal.

Such physiological biomarkers could serve as foundation 
for prediction of the child’s neurodevelopmental outcomes 
and aid in devising early developmental intervention strate-
gies for children at risk of altered neurodevelopmental tra-
jectories due to prenatal stress exposure. The aim of the 
study was to: (1) evaluate the coupling between mHR and 
fHR by BPRSA analysis; and (2) compare BPRSA results 
of fetal response to mHR changes in healthy controls and 
stressed fetuses.

Materials and methods

Study design and study population

We performed a prospective matched control study in 
stressed mothers with controls matched for 1:1 for parity, 

maternal age, and gestational age at study entry. Subjects 
were recruited for 22 months (July 2016 until May 2018) 
from a cohort of pregnant women followed in the Depart-
ment of Obstetrics and Gynecology at “Klinikum rechts der 
Isar” of the Technical University of Munich (TUM), a ter-
tiary center of Perinatology located in Munich, Germany, 
serving ~ 2000 mothers/newborns per year.

Experimental design

TUM obstetricians identified prospective subjects according 
to the following inclusion criteria: women with singleton 
pregnancies between 18 and 45 years of age in their third 
trimester (at least 28 weeks gestation). Exclusion criteria 
were (a) serious placental alterations defined as fetal growth 
restriction according to Gordijn et al. [19]; (b) fetal mal-
formations; (c) maternal severe illness during pregnancy 
(Table 1 from [20]); (d) maternal drug or alcohol abuse.

The participants entered Phase I–III of the study:

Phase I: Screening

We administered Cohen Perceived Stress Scale questionnaire 
(PSS-10) [21] to all pregnant women visiting the outpatient 
ward of the Department of Obstetrics and Gynecology at 
“Klinikum rechts der Isar” of the Technical University of 
Munich, attached to a short information brochure about 
the study. 1500 questionnaires were distributed during the 
study period. PSS-10 categorized them as SG for PSS-10 
score ≥ 19 [3]. Inclusion- and exclusion criteria were applied 
after returning the questionnaires. For every subject catego-
rized as stressed, the next screened participant matching 
for gestational age at recording with a PSS-10 score < 19 
was entered into Phase II as control. Due to limited staff 
resources, not all controls could be included into phase 
II of the study, so we choose the 1:1 matching criteria as 
described above.

Measurement of maternal stress during pregnancy: Mater-
nal psychosocial stress was measured using the Cohen Per-
ceived Stress Scale (PSS 10). This questionnaire measures 
the degree to which situations in one’s life are appraised 
as stressful and is a widely used psychological instrument 
to measure nonspecific perceived stress [21]. The PSS-10 
predicts objective biological markers of stress and increased 
risk for disease among persons with higher perceived stress 
levels. Increased maternal prenatal stress, measured by PSS-
10, was associated with temperamental variation of young 
infants and may represent a risk factor for psychopathology 
later in life [22]. The PSS-10 has been validated in German 
speaking populations and is a quick tool for screening stress 
among prospective subjects [23–25].
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Table 1  Study outcome 
parameter

Data are median (interquartile range) or mean (SD) or n (%)
PSS perceived stress scale, BMI body-mass index, NICU neonatal intensive care unit
*p < 0.05
a Missing data of 14 CG and 17 SG; 0: control group (PSS < 19) 1: stress group (PSS ≥ 19)

Characteristics Control Prenatal stress p
n = 55 n = 55

Baseline
 Gestational age at screening (weeks) 34.0 (33.4–35.0) 34.0 (32.7–35.1) 0.626
 Gestational age at inclusion (weeks) 36.7 (35.0–37.4) 36.4 (35.4–37.4) 0.844
 Maternal age (years) 35.2 (3.5) 33.8 (5.4) 0.108
 BMI pregestational (kg/m2) 21.5 (20.2–23.5) 24.2 (20.9–30.8) 0.001*
 BMI at inclusion (kg/m2) 26.1 (24.5–28.7) 29.8 (26.0–36.7) < 0.001*
 European/Caucasian 50 (90.9) 51 (92.7) 0.728
 Married 41 (74.5) 39 (70.9) 0.669
 University degree 45 (81.8) 29 (52.7) 0.001*
 Household income > 5000€/month 35 (63.6) 19 (34.5) 0.002*
 Smoking 1 (1.8) 7 (12.7) 0.028*
 Multiparity 22 (40.0) 30 (54.5) 0.127
 Planned pregnancy 50 (91.0) 36 (65.5) 0.001*
 IVF/ICSI 6 (10.9) 2 (3.6) 0.142
 Gestational diabetes 1 (1.8) 9 (16.4) 0.008*
 Autoimmune disease 2 (3.6) 10 (18.2) 0.014*
 Working status at screening 2 (3.6) 4 (7.2) 0.388
 Score PSS-10 9.0 (6.0–12.0) 22.0 (21.0–24.0) < 0.001*
 Cortisol in maternal hair (pg/mg)a 53.0 (34.4–105.9) 86.6 (48.0–169.2) 0.029*
 Maternal heart rate (bpm) 87.0 (10.6) 88.7 (9.3) 0.382
 Maternal respiratory rate 27.9 (3.6) 28.4 (3.6) 0.437
 Fetal heart rate (bpm) 140 (136–146 140 (136–147) 0.995
 FSI (ms) 0.00 (-0.49–0.18) 0.43 (0.18–0.85) < 0.001*

Perinatal outcome
 Gestational age at delivery (weeks) 40.0 (39.0–40.7) 39.4 (38.6–40.6) 0.058
 Cesarean delivery (CD) 10 (18.2) 23 (41.8) 0.007*
 “Planned” CD 3 (5.4) 14 (25.4) < 0.001*
 CD after onset of labor 7 (12.8) 9 (16.4) 0.470
 Gender female 24 (43.6) 20 (36.45) 0.436
 Birthweight (g) 3560 (412) 3552 (470) 0.922
 Birthweight percentile 52.1 (25.0) 57.6 (25.7) 0.270
 Length (cm) 53.0 (51.0–55.0) 53.0 (52.0–55.0) 0.591
 Head circumference (cm) 35.0 (34.0–36.0) 35.0 (34.0–36.0) 0.437
 Apgar min 5 10.0 (9.0–10.0) 10.0 (9.0–10.0) 0.173
 Apgar min 10 10.0 (10.0–10.0) 10.0 (10.0–10.0) 0.280
 5-min Apgar < 7 4 (7.2) 2 (3.6) 0.388
 Admission to NICU 2 (3.6) 3 (5.4) 0.647

Arterial cord blood analysis results
 pH 7.25(0.09) 7.28 (0.08) 0.137
 Umbilical artery pH ≤ 7.15 5 (9.1) 3 (5.4) 0.430
 Base excess, mmol/l -5.4 (3.4) -4.9 (3.0) 0.431
 pO2, mmHg 21.1 (17.0–26.2) 17.9 (13.0–23.0) 0.035*
 pCO2, mmHg 51.2 (11.1) 50.7 (9.4) 0.826
 Lactate mmol/l 4.1 (1.4) 4.0 (1.6) 0.861
 Glucose, mg/dl 81.7 (20.8) 75.5 (19.0) 0.187
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There is no recommended cut-point for high stress, and 
other studies have stratified this continuous variable using 
study-specific thresholds between 67 and 75% [3, 26]. In our 
case, we performed a pilot study and we found that the 80% 
quantile, to be on the safe side, of the PSS-10 was 19, which 
was then used as the cut-off score for stressed (SG) and con-
trol group (CG) in this study, also in accordance to prior 
studies [3, 26]. PSS-score ≥ 19 corresponded to 22% women 
in our pilot study, another 22% showed PSS-10 score < 10 
and 56% had a PSS-10 score between 10 and 19.

Phase II: Maternal and fetal prenatal ANS assessment

Prospective participants attended an informational session, 
where procedures were explained in detail, formal enroll-
ment completed, and the consent forms from the participants 
obtained. We collected demographic information from the 
consented women.

Two and a half weeks after screening, we performed a 
transabdominal ECG (taECG) recording at 900 Hz sampling 
rate of at least 40 min duration using AN24 (GE HC/Monica 
Health Care, Nottingham, UK).

We applied the fetal ECG extraction algorithm SAVER 
[27] to detect the fetal R-peaks and the maternal R-peaks in 
the taECG separately. With the fetal- and maternal R-peaks, 
we obtained the fetal- and maternal RR interval time-series. 
The quality of taECG was estimated by the calculation of 
signal quality index (SQI) within windows of one second 
each. Regions where SQI was lower than 0.5 were marked as 
artifacts and were not considered for the analysis. Mean fetal 
heart rate (fMHR) and mean maternal heart rate (mMHR) 
were calculated. Mean maternal respiratory rate was derived 
from taECG and calculated according to Sinnecker et al. 
[28].

Phase III: Delivery

Newborn recordings: Clinical data including birth weight, 
length and head circumference, pH and Apgar score, were 
recorded.

Maternal cortisol assessment: On the day of parturition, hair 
strands (~ 3 mm diameter) were collected from the posterior 
vertex region on the head as close to the scalp as possible 
[29]. Hair samples were sent to the Department of Clini-
cal Biochemistry (Endocrinology Section) of the Faculty of 
Pharmacy and Biochemistry (University of Buenos Aires) 
for cortisol measurement using auto-analyzers. Based on 
an approximate hair growth rate of 1 cm per month, the 
proximal 3 cm long hair segment is assumed to reflect the 
integrated hormone secretion over the three-month-period 
prior to sampling. The 3 cm hair sample was wrapped in alu-
minum foil for protection and stored at room temperature up 

to three months. For the transatlantic air transport, aluminum 
stored hair samples were additionally and individually 
wrapped in insulation material during the flight to ensure 
to keep the temperature as stable as possible. For analysis, 
fifty milligrams of hair obtained from the 3 cm closest to 
the roots (equivalent to 3 months of growth), were weighed 
in an analytical balance, as recommended by the Society of 
Hair Testing [29]. The cortisol was extracted and measured 
according to Iglesias et al. [30]. This procedure has been 
validated with the standard method of mass spectrometry 
and was patented by the University of Buenos Aires [31].

Bivariate phase‑rectified signal averaging (BPRSA)

The bivariate PRSA method is an extension of the “mono-
variate” PRSA method that we introduced for the analysis 
of fetal heart rate [32, 33].

Bivariate phase-rectified signal averaging allows for iden-
tifying and quantifying relationships between two synchro-
nously recorded signals [17]. In this study these two signals 
are the maternal heart rate (mHR) as the trigger signal and 
the fetal heart rate (fHR) as the target signal.

The algorithm of BPRSA consist of four steps:

1. At the beginning we identify all decreases in mHR and 
mark them as so called anchor points A.

2. To investigate the response of the fetus at the defined 
anchor points the fHR is interpolated with a sample rate 
of 900 Hz as maternal ECG is registered with 900 Hz. 
Anchor points are identified by the time of occurrence 
within the fHR and are denoted as A’.

  Time frames of a certain length (“2L”) around each 
anchor A′ are selected in the fHR signal. In the current 
study we used L = 9000 samples, which corresponds to 
a window of 20 s.

3. All segments are aligned at the anchors leading to a 
phase-rectification of the segments. The BPRSA-signal 
X is obtained by averaging the aligned segments. Deflec-
tions in the BPRSA-signal can be interpreted as coupling 
between mHR and fHR.

4. Finally, the BPRSA-signal X is quantified within a 
defined time span prior to and after the center of X. The 
time span starts 1.5 s after the center and ends at 2.5 s 
after the center. Therefor we use S1 and S2 as additional 
indices for the quantification. The data frame after the 
center is defined as L + S1 up to L + S2. On the other 
side, the data frame prior to the center is defined as 
L − S2 up to L − S1. Using S1 = 1350 and S2 = 2250 
reflects the sample rate of 900 Hz in the BPRSA signal 
X and corresponds to 1.5 s and 2.5 s, respectively. Cou-
pling between mHR and fHR was analyzed by BPRSA 
resulting in a new parameter called fetal stress index 
(FSI). FSI is quantified by calculating the difference 
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between the mean values of the data frames after and 
prior the center of X.

Note that the center of X (at indices L) corresponds to 
our anchor definition that was performed within the mRRI. 
Thus, the FSI measures the response of the fetus on maternal 
heart rate decreases.

Statistics

Normal distribution was tested using Shapiro–Wilk test. For 
skewed distribution, medians and interquartile ranges were 
reported, and for Gaussian distribution, mean and stand-
ard deviation. For categorical data, we show the absolute 
and relative frequencies. For comparison between groups, 
Mann–Whitney U tests, t test for independent samples and 
Pearson Chi-squared test were used. Receiver operating 
characteristics (ROC) analyses were performed to estimate 
the predictive performance of the quantitative variables for 
the presence of PS.

For each fetus and mother, the fHR and mHR recorded at 
the same time were analyzed.

Finally, Pearson’s correlation coefficient was used to evalu-
ate the relationship between the fHR and mHR. All statistical 
tests were conducted two-sided and a p value < 0.05 was con-
sidered statistically significant for all comparisons. The fetal 
HR extraction algorithm was carried out in MatlabR2016a. 
Statistical analysis was performed using IBM SPSS Statistics 
for Windows, version 25 (IBM Corp., Armonk, NY, USA).

Study approval and funding

The study protocol is in strict accordance with the Commit-
tee of Ethical Principles for Medical Research from TUM 
and has the approval of the “Ethikkommission der Fakultät 
für Medizin der Technischen Universität München” (reg-
istration number 151/16S). ClinicalTrials.gov registration 
number is NCT03389178. Written informed consent was 
received from participants prior to inclusion in the study. 
The project was developed and performed by own resources 
of Frauenklinik/Klinikum rechts der Isar.

Results

Sociodemographic parameters and perinatal 
outcomes

Between July 2016 and May 2018 of all 1500 screened 
women, 538 (35.8%) returned the questionnaire and 

FSI =
1

S2 − S1

L+S2
∑

i=L+S1

X(i) −
1

S2 − S1

L−S1
∑

i=L−S2

X(i)

89/538 (16.5%) scored ≥ 19 on PSS-10 classifying as SG 
(Figure S1). Based on recruitment criteria 55/538 (10.2%) 
subjects were included in the stress group (SG) of the 
study and the control group (CG) comprised 55 of pos-
sible 449 (12.2%) subjects at a similar median gestational 
age of 34.0 weeks. The cohort characteristics and perinatal 
outcome variables are summarized in Table 1.

Median PSS of the SG was 22.0 (1st—3rd quartile: 
21.0–24.0) and that of the CG9.0 (6.0–12.0) (p < 0.001), 
respectively. The cortisol in maternal hair was 63% higher 
in SG versus CG (p = 0.029) confirming the PSS results. 
The correlation of PSS and cortisol in hair was 0.182, 
no statistically significant association was observed 
(p = 0.098). Area under the ROC curve for hair cortisol 
(prediction PS) was 0.639 (p = 0.029).

The pregestational [24.2 (20.9–30.8) versus 21.5 
(20.2–23.5), p = 0.001] and at-study-inclusion [29.8 
(26.0–36.7) versus 26.1 (24.5–28.7), p = 0.001] median 
BMI of the SG patients was higher. Cord blood arterial 
pO2 was lower in the SG fetuses [17.9 (13.0–23.0) versus 
21.1 (17.0–26.2) mmHg, p = 0.035].

There were 9 times as many women in the SG diag-
nosed with gestational diabetes mellitus (GDM) than in 
the CG (p = 0.008) and 5 times as many diagnosed with 
cases of autoimmune diseases (p = 0.014).

Smoking was more frequent in the SG (p = 0.028) and 
the number of planned pregnancies was lower in the SG 
than in the CG (p = 0.001).

Less SG subjects visited university (p = 0.001) and 
had the monthly net-income per household above 5000€ 
(p = 0.002). More than two times as many SG than CG 
subjects ended up in cesarean delivery (p = 0.007). The 
rate of cesarean deliveries after onset of labor was similar 
in both groups but 25.4% had a “planned” cesarean deliv-
ery being in the SG versus 5.4% of the women being in 
the CG. Indications for the “planned” cesarean delivery in 
the SG were breech presentation, prior cesarean delivery, 
maternal indication and placenta praevia. In the CG the 
only indication was prior cesarean delivery.

BPRSA

Data from 104 out of 110 subjects were used, because 6 sub-
jects had poor ECG signal quality (2 CG fetuses and 4 SG).

Mean mHR, mean maternal-respiratory rate calculated 
from Mecg, and median fHR were similar in both groups. 
Median FSI was significantly higher in SG compared to con-
trols [0.43 (0.18–0.85) versus 0.00 (−0.49–0.18), p < 0.001]
(Fig. 1). This means that SG fetuses showed fHR decreases 
whereas CG fetuses remained similar after the maternal 
anchor “mHR decreases”. This difference remained sig-
nificant even after adjustment of relevant socioeconomic 
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differences between both groups (BMI, university degree, 
household income > 5000€/month, smoking, planned preg-
nancy, diabetes, autoimmune diseases; p = 0.012). Area 
under the receiver operating characteristics curve was 0.748 
(p < 0.001) (Fig. 2). Figure 3 illustrates BPRSA results 
showing the fetal response to maternal heart rate decreases.

Apart, we found a significant correlation of PSS and FSI 
(r = 0.34, p < 0.001).

Discussion

In this pilot study, we show that prenatal maternal stress 
identified in the third trimester by a validated question-
naire (PSS-10) shows a correlation with the coordination 
of fetal- and maternal heart-rate and fetal oxygenation at 
birth. The proposed BPRSA index (FSI) provides unique 
insights into the relationship between two biological sys-
tems, mother and fetus. We could detect periodic mHR 
decreases reflecting typical pattern of maternal breathing 
(sinus bradycardia during expiration). Interestingly, CG 
fetuses remained “stable” during these periods whereas 
fetuses of stressed mothers showed significant decreases of 
fHR. We hypothesize that this response is induced by the 
mechanical stimuli (diaphragm excursion that changes the 
uterine pressure). It is well known that maternal anxiety 
and stress can evoke immediate changes in uterine blood 
flow, fetal heart rate (FHR) or fetal movements (FM), and 

induce long-term changes in fetal growth, metabolism, 
behavior and cognition.

Future studies will need to address the question why CG 
fHR remained unchanged whereas SG showed decreased 

Fig. 1  Box plots using bivariate phase-rectified signal averaging (BPRSA) method comparing controls (CG, blue, dotted) and stress group (SG, 
red, striped)

Fig. 2  Area under the receiver operating characteristics curve for pre-
diction of maternal stress using bivariate phase-rectified signal aver-
aging method
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fHR during maternal breathing. A possible explanation 
might be the “over-sensitization” of SG fetuses’ HPA axis 
or the differences in maturation of the sympathetic and para-
sympathetic branches of the ANS in contrast to the CG simi-
lar to data derived from animal models where lower-weight 
twin sheep fetuses showed increased sympathetic activity 
and immaturity of circulatory control [34]. Physiologi-
cally, the ability of two-complex weakly coupled systems 
to entrain each other is influenced by their intrinsic oscilla-
tory properties and maturation, respectively. A well-studied 
example can be found in the cardiac pacemaker physiology 
[35].

Fetal ANS is very sensitive to maternal stress [36–38] and 
common markers of ANS such as fHR reactivity to a stimu-
lus, reflect emerging individual differences in the develop-
ment of the autonomic- and central nervous systems related 
to styles of future emotional regulation and risk for psycho-
pathology [39, 40]. It is hence likely that the fHR response 
to mHR changes represents a fetal stress memory and may 
serve as a novel biomarker to detect PS effects early in utero 
which may help guide early interventions postnatally. For 
example, PS was linked to increased risk for autism spec-
trum disorder and alterations of ANS in autism spectrum 
disorders children have been reported [41, 42].

We observed a mild fetal hypoxia at birth compatible with 
the concept of chronic reduction of uterine blood flow due 
to PS [43]. The result may be a reduced placental-catecho-
lamine clearance, thus elevating fetal catecholamine levels 
with hyperactive HPA axis and sympathetic nervous system. 
The postnatal developmental sequelae of these adaptations 
remain to be elucidated.

The persistent exposure to stress is validated on the 
maternal side by the higher maternal-chronic cortisol lev-
els at delivery in SG compared to CG. Perceived (subjec-
tive) measures of maternal stress did not correlate well with 
maternal hair cortisol in our study. This agrees with the body 
of inconclusive evidence seeking to link subjective stress 
exposure with cortisol values [30, 44–46]. The most likely 
cause of the lack of correlation is the presence of mecha-
nisms mediating PS effects that do not alter maternal cortisol 
levels. As reviewed by Rakers et al. [4], there are further 
potential mediators that connect the stressed mother with 
the fetus besides cortisol such as catecholamines, reactive 
oxygen species, cytokines, serotonin/tryptophan, and mater-
nal microbiota, similarly reflecting the autonomic nervous 
system. fHR changes may be a good biomarker mediating 
PS-effects as evidenced by our finding that FSI was more 
predictive of the subjective stress perception than cortisol. 

Fig. 3  Bivariate phase-rectified signal averaging (BPRSA) analy-
sis of RR intervals. (Top) PRSA signal X for maternal RR intervals 
(mRRI). The anchor point definition, namely all heart rate decelera-
tion, reflect the central oscillation of X. (Bottom) the response of fetal 

RR intervals (fRRI) on the maternal decreases. The signal of the 
control BPRSA shows a significant lower response than the BPRSA 
curve for the fetus of a stressed mother. Also shown is the time span 
which is used for the quantification of fetal stress index (FSI) (yellow)
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This result is in line with the psychological body of work 
such as the polyvagal theory [47] where heart-rate variabil-
ity has served as a good biomarker of internal emotional 
regulation which, in turn, reflects upon subjective coping 
with daily stress.

Our study has several strengths and limitations. One of 
the strengths is the prospective observational study design 
including women experiencing daily hassles stress rather 
than extreme stress exposures. We believe this makes the 
findings generalizable onto population of pregnant women 
seen in most antepartum follow-up centers. Our demo-
graphic data indicated distinct features of SG and CG regard-
ing metabolic- and socioeconomic status. This may be seen 
as a confounding factor for FSI, but even after adjustment 
for these possible confounders, the difference of FSI between 
both groups remains significant. When planning the study 
we decided to match only for known influence factors on 
fetal ANS (gestational age, maternal age) and birth outcome 
(parity). After having performed the analysis we obtained 
significant differences in socioeconomic parameter as uni-
versity degree, income, smoking status, BMI, autoimmune 
disease, and GDM reflecting parameter which might be the 
cause of the maternal stress or at least playing a role for 
stress therefore being significantly more frequent in our SG. 
We interpret these findings as a possible source for maternal 
stress rather than a random difference of the study group. 
The best scenario would have been to include the whole 
cohort However, since all women qualifying as SG were 
enrolled, but not all controls, we suggest this had no impact 
on the reported differences due to PS.

With an objective and low-cost biomarker of PS impact 
on mother and fetus in hand, prevention should be the sub-
ject of the future studies. Given that psychometric instru-
ments by itself have been shown to be insufficient and 
inconsistent to diagnose prenatal stress, González-Ochoa 
et al. [48] recently proposed that a combination of clinical, 
physiological, and biochemical studies might improve the 
precision of stress assessment in gestant mothers to involve 
children in early stimulation programs and parenting sup-
port. In view of this proposal, we envision that FSI might 
become a powerful objective measure of the effects on stress 
on maternal ANS as well as in the transgenerational influ-
ence on fetal development.

Our findings warrant further investigations into the mech-
anisms of maternal–fetal stress transfer under the widely 
prevalent conditions of daily hassles, identification of epi-
genetic biomarkers impacting the stress axis and ANS activ-
ity and postnatal consequences of intrauterine imprinting of 
maternal stress upon fetal physiology.

In conclusion, we validated our hypothesis that PS-
induced programming is reflected in mHR- and fHR bio-
markers of ANS activity. The biomarkers we identified can 
be harnessed for early detection and follow-up of children 

affected by PS. Early detection of altered neurodevelopmen-
tal trajectories opens new possibilities for designing more 
timely and effective interventions to improve outcomes of 
pregnancy affected by PS.
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