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ABSTRACT 

Koinobiont parasitoids regulate the physiology of their hosts, possibly interfering with the host gut 

microbiota and ultimately impacting parasitoid development. We used the parasitoid Cotesia flavipes to 

investigate if the regulation of the host would also affect the host gut microbiota. We also wondered if the 

effects of parasitization on the gut microbiota would depend on the host – parasitoid association by testing 

the permissive Diatraea saccharalis and the nonpermissive Spodoptera frugiperda hosts. We determined 

the structure and potential functional contribution of the gut microbiota of the fore-midgut and hindgut of 

the hosts at different stages of development of the immature parasitoid. The abundance and diversity of 

operational taxonomic units of the anteromedial gut and posterior region from larvae of the analyzed 

hosts were affected by parasitization. Changes in the gut microbiota induced by parasitization altered the 

potential functional contribution of the gut microbiota associated with both hosts. Our data also indicated 

that the mechanism by which C. flavipes interferes with the gut microbiota of the host does not require a 

host-parasitoid coevolutionary history. Changes observed in the potential contribution of the gut 
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microbiota of parasitized hosts impact the host’s nutritional quality, and could favor host exploitation by 

C. flavipes.  

Keywords: Bacteria, dysbiosis, functional contribution, host regulation, microbial ecology, symbiosis.  

INTRODUCTION  

Ecosystems are represented by complex interactions among living beings. These interactions and the 

interrelationships among organisms can directly or indirectly affect organisms linked at different levels in 

a chain of interactions. The term symbiosis (from the Greek syn ―together‖ and bios ―life‖) is used to 

describe any interaction between species alike (De Bary, 1879; Saffo, 1992) and the interactions among  

microorganisms and multicellular organisms are increasingly receiving attention due to the discovery of 

the role that microbial symbionts have in different ecological and multitrophic host relationships (Moran, 

2006). Many of the issues that arise for a better understanding of host microbiota relationships and their 

variations are essentially ecological. This has led to the incorporation of models commonly used in 

ecology for these studies. However, given the particularities found in the host/microbiota relationships, 

the expansion of these models has been proposed, also favoring ecology in general (Miller et al., 2018; 

Miller and Bohannan, 2019). Studies in this field benefited greatly from the advent of high throughput 

sequencing technologies (Bragg and Tyson, 2014). Such studies have extended our understanding of the 

diversity and complexity of associated microbial communities, thereby challenging the well-established 

concept of an individual (Gilbert et al., 2012; Guerrero et al., 2013). Thus, the behavior of the individual 

and its responses to the environment require a holistic investigation, which includes the relationship 

between the individual and its symbionts, leading to the definition of a single entity, the holobiont, which 

is evolving as a single unit of selection (Zilber-Rosenberg and Rosenberg, 2008; Gilbert et al., 2012; 

Guerrero et al., 2013). The term holobiont was first introduced by Mindell (Mindell, 1992) to describe the 

composite nature of species associated with primary symbionts, but has come to include all host-

associated microorganisms (Margulis, 1993). There is an intense debate as to whether host - microbes are 
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or not a unit of selection (Bordenstein and Theis, 2015; Douglas and Werren, 2016; Skillings, 2016; 

Roughgarden et al., 2018), regardless of the well-defined principles for holobiont – hologenome 

recognition (Bordenstein and Theis, 2015). Furthermore, even if the inheritable aspect of the holobiont is 

disregarded, the host microbial community can provide time for the host genome to evolve during periods 

of changes in the environment (Zilber-Rosenberg and Rosenberg, 2008). 

Insects are widely used as models to study symbiosis because of the range of associations shared 

with microorganisms (from pathogenic to mutualistic), and the effects symbionts have on insect survival 

and fitness attributes (Bourtzis and Miller, 2003). One of such examples is the rich diversity of 

microorganisms associated with the gut of insects. Most of the gut-associated bacteria are free living, and 

are facultative associated with insects. Many are commensals or ordinary passengers, since they are 

acquired with the insect’s food source (Dillon and Dillon, 2004; Engel and Moran, 2013). Nevertheless, 

there are several examples of obligate and facultative gut bacteria that contribute to host nutrition, food 

digestion, and nitrogen cycling, even in cases in which bacteria are acquired from the environment at 

every generation (Beard et al., 2002; Kikuchi et al., 2005). Thus, the gut microbiota of insects influences 

several physiological processes and interferes with the expression of the host phenotype, similarly to what 

occur with humans (Dillon and Dillon, 2004; Clemente et al., 2012; Engel and Moran, 2013).  

The gut microbiota of insects can assist with food digestion and utilization by producing enzymes 

that act on food digestion (Anand et al., 2010; Krishnan et al., 2014) and on the degradation of 

xenobiotics (Kikuchi et al., 2012; Adams et al., 2013). Additionally, gut microbes allow the exploitation 

of suboptimal food sources by the host through the synthesis and release of essential vitamins (Eichler 

and Schaub, 2002) and amino acids (Douglas, 2006; Nikoh et al., 2011) and the recycling of nitrogen 

(French et al., 1976; Ohkuma et al., 1996; Hongoh et al., 2008). Moreover, the gut microbiota affects the 

hosts’ intra- and interspecific interactions, interfering with the process of speciation (Brucker and 

Bordenstein, 2013), mate choice (Sharon et al., 2010; Sharon et al., 2011), production of semiochemicals 
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(Dillon et al., 2002; Leroy et al., 2011) and protection against pathogens (Azambuja et al., 2005; 

Cirimotich, Dong, et al., 2011; Bahia et al., 2014).  

The successful association of insect hosts and their microbial symbionts also requires the 

maintenance of microbial populations within certain densities to avoid excessive costs or even damage to 

the host, at the same time microbial levels reach densities that enable them to provide the required 

contribution to the host (Ryu et al., 2010; Charroux and Royet, 2012). Several factors (e.g., gut pH, redox 

potential, and food quality) are known to affect gut microbes (Dillon and Dillon, 2004; Engel and Moran, 

2013). Moreover, molecules derived from the host immune system  (lysozymes, reactive oxygen species, 

and antimicrobial peptides) are involved in keeping the gut microbiota under controlled levels (Dillon et 

al., 2002; Azambuja et al., 2005; Cirimotich, Dong, et al., 2011; Bahia et al., 2014). 

Therefore, sources of stress that challenge the host immune system derange the process of regulation 

of the gut microbiota. Baculovirus suppresses the immune system of infected larvae of Spodoptera exigua 

(Huebner) (Lepidoptera: Noctuidae) which increases the load of gut bacteria, favoring the pathology of 

this viral infection (Jakubowska et al., 2013). Alterations in the microbiota of Drosophila melanogaster 

were also shown to shape host resistance to the parasitoid Asobara tabida (Chaplinska et al., 2016). Even 

in nematodes, it is possible to find a greater diversity in the gut microbiota of infected than of uninfected 

nematodes (Vicente et al., 2016). Insect parasitoids are also stressors of the host immune system, and 

parasitic wasps, particularly koinobionts, use a set of virulence factors to regulate the humoral and 

cellular immune responses of the host to allow host colonization by immature parasitoids. Koinobionts 

are parasitoids in which the hosts are not paralysed after parasitization, and parasitized hosts can actively 

move and feed during parasitoid development (Quicke, 2015). Parasitoids can regulate the host immune 

system by inactivating the IMD signaling pathway through inhibition of NF-κβ transcription factors (Bae 

and Kim, 2009; Bitra et al., 2012), which also participate in the regulation of gut microbes (Charroux and 

Royet, 2012). Additionally, parasitoids alter host food preference (Smilanich et al., 2011), food intake and 

utilization (Rossi et al., 2014), nitrogen metabolism, and excretion (Kahn et al., 1976). Moreover, 
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parasitoids also induce endocrine changes, affecting host molting and metamorphosis (Pfister‐Wilhelm 

and Lanzrein, 1996; Mahmoud et al., 2012). All these physiological changes are reported to interfere with 

the gut microbiota homeostasis (Dillon and Dillon, 2004; Broderick and Lemaitre, 2012; Hammer et al., 

2014; Yun et al., 2014). 

The successful development of parasitoids relies on the efficacy the host is regulated by the virulence 

factors produced by these wasps. The successful regulation and exploitation of hosts by parasitoids 

depends on the evolutionary history of the host-parasitoid interaction. During their evolutionary history, 

hosts developed defense mechanisms against natural enemies, while parasitoids improved their strategies 

to successfully exploit their hosts (Abrams, 2000; Pennacchio and Strand, 2006; Cônsoli et al., 2012). 

Parasitoids can employ a range of molecules from their venom glands (Asgari and Rivers, 2011), calyx 

fluids (Tanaka and Vinson, 1991), larval secretions (Vinson and Iwantsch, 1980a) and teratocytes 

(Dahlman, 1991), besides proteins produced by the expression of genes from associated viral particles, 

polydnavirus, when infecting host tissues (Strand and Burke, 2013) to regulate their hosts physiology, 

growth and development (Beckage and Gelman, 2004; Cônsoli and Vinson, 2004). However, there are 

hosts that remain insensitive to the diversified tools parasitoids developed to guarantee a successful 

parasitization, particularly in host – parasitoid interactions that do not share an evolutionary history. 

Refractory hosts (nonpermissive hosts) rarely allow for the successful establishment and development of 

parasitoid progenies, contrarily with the highly successful rate of parasitization and effective parasitoid 

development in permissive hosts (Minchella, 1985; Bitra et al., 2016).  

Once the host and its associated gut microbiota function as a holobiont, the strategies that parasitoids 

employ to successfully parasitize and develop in their hosts would also be expected to result in the 

regulation of the host’s gut microbiota. In order to test this hypothesis, we predicted host parasitization 

would induce quantitative and/or qualitative changes in the composition of the gut microbiota and would 

affect the functional contribution of the gut microbiota. We also predicted successful changes in the 

diversity of the gut microbiota and on its functional contribution would depend on the effective regulation 
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of the host by the natural enemy. To test our predictions, we investigated the changes induced in the 

diversity and potential functional contribution of the gut microbiota of the permissive Diatraea 

saccharalis (F.) (Lepidoptera: Crambidae) and the nonpermissive Spodoptera frugiperda (J. E. Smith) 

(Lepidoptera: Noctuidae) hosts when parasitized by the larval endoparasitoid Cotesia flavipes Cameron 

(Hymenoptera: Braconidae). 

MATERIALS AND METHODS 

 Insects rearing 

All insects used in our study were obtained from stock laboratory colonies maintained on artificial 

diets following standard procedures for insect rearing. Larvae of D. saccharalis were reared on an 

artificial diet based on soy flour and wheat germ (Parra and Mihsfeldt, 1992), while S. frugiperda larvae 

were reared on an artificial diet based on wheat germ, beans and brewer's yeast (Greene et al., 1976), 

following standard rearing procedures (Parra and Panizzi, 1991). Cotesia flavipes was also obtained from 

a laboratory colony and reared using larvae of D. saccharalis as the host. Host larvae were individually 

offered to female wasps. Once stung, larvae were transferred to small plastic dishes containing a small 

piece of the artificial diet, in which they remained until parasitoid larval egression and pupation. The 

masses of cocoons were collected and transferred to a clean dish for wasp emergence, adult feeding in 

water-honey (1:1) solution and mating (Parra, 1999). Hosts and parasitoids were reared under controlled 

laboratory conditions (25 ± 1°C; 70 ± 10% RH; 14 h photophase). 

 Effects of parasitization by Cotesia flavipes on the gut microbiota of permissive and nonpermissive 

hosts 

Once parasitized larvae grow at a different rate than the nonparasitized larvae, we opted to use larvae 

of D. saccharalis at the beginning of the last instar, allowing the sampling of the gut microbiota of control 

and parasitized larvae within the same instar. Larvae of the nonpermissive host S. frugiperda were 

subjected to parasitization by C. flavipes 12 h after the molt to the 3
rd

 instar, once C. flavipes is unable to 
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attack older larvae of S. frugiperda. Thus, larvae of D. saccharalis at the premolt from 5
th
 to 6

th
 instar 

were selected, and only those molting within 12-h were later used for the experiments. Selected larvae 

were split into two distinct groups. In one group, larvae were individually offered to C. flavipes for 

parasitization; the other group was kept as control (non-parasitized). Larvae were individually placed into 

rearing containers under controlled conditions (25 ± 1°C; 70 ± 10% RH; 14-hour photophase) until 

dissection for the sterile collection of gut samples. Samples from control (C) and parasitized (P) larvae 

were collected at three time points relative to host parasitization, i.e., on the first (1DAP), fifth (5 DAP) 

and ninth day after parasitization (9 DAP). Seven larvae were dissected in each sampling period for each 

biological replicate in each treatment. Each sampling period had three biological replicates (1 replicate = 

7 guts)/treatment.  

Larvae were surface sterilized in cold 0.2% sodium hypochlorite in 70% ethanol solution, rinsed in 

cold sterile water and dissected in cold sterile saline solution (125 mM NaCl, 4°C) under aseptic 

conditions. The gut was removed, rinsed in sterile saline, and the foregut+midgut were separated from the 

hindgut. The foregut+midgut (anteromedial gut region – ANT) and the hindgut (posterior gut region – 

POS) were transferred to clean microtubes and immediately stored in absolute ethanol at -20°C until 

DNA extraction. The anteromedial region and the hindgut play different roles in the process of food 

digestion and assimilation. The anteromedial region of the gut is involved with food transport (foregut), 

food digestion and nutrient assimilation (midgut), while the posterior region of the gut is involved with 

excretion and water and nutrient resorption. The different roles each region of the gut play also lead to an 

environment that differs in ion concentration and pH, which may affect their microbial composition 

(Egert et al., 2003; Dillon and Dillon, 2004; Ishak et al., 2011; Tang et al., 2012; Smith et al., 2017). 

Thus, each one of these regions were sampled and analyzed separately. 
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 DNA extraction, amplification and sequencing of the V4 region of the 16S ribosomal RNA gene 

Each gut sample collected was macerated in liquid nitrogen and subjected to genomic DNA 

extraction (gDNA) using the commercially available product AxyPrep Bacterial Genomic DNA Kit 

(Axygen), following the manufacturer’s recommendations. The gDNA samples obtained were checked 

for quality, integrity and purity by spectrophotometry and agarose gel electrophoresis, following standard 

procedures before storage at -20°C (Sambrook, 2001).  

gDNA samples were used in PCR amplification of the V4 region of the 16S ribosomal RNA gene 

(16S rRNA) using the universal set of primers 16SV4F (5’AGTCAGTCAGCCGGACT 

ACHVGGGTWTCTAAT3’) and 16SV4R (5’TATGGTAATTGTGTGCCAGCMGCCGCGG TAA3’) 

(Kozich et al., 2013). Reactions were programmed at 98°C for 2 min (1 cycle), followed by 30 cycles at 

98°C for 45 s, 56°C for 1 min and 72°C for 90 s, with a final extension (1 cycle) at 72°C for 10 min. 

Reactions were performed in a final volume of 50 µL, containing 100-150 ng gDNA, 1.5 mM MgCl2, 1x 

PCR buffer, 0.2 mM of each dNTP, 0.32 µM of each primer and 2U GoTaq
®
 DNA Polymerase 

(Promega). Amplification products were separated in 1.5% agarose gel electrophoresis containing 0.5 

μg/mL of ethidium bromide in TAE buffer (40 mM Tris-acetate; 1 mM EDTA at pH 8.2) under constant 

voltage (100 V). PCR products were extracted from agarose gel and purified by centrifugation using an 

Ultrafree-DA spin column (Millipore). An aliquot of 50 ng of the purified amplicons was subsequently 

subjected to a nested-amplification for addition of tags and adapters required for paired-end sequencing 

(2x250 bp) of the different libraries in a MiSeq Illumina sequencing platform. The nested reaction was 

performed using the commercial product NEXTflex™ 16S V4 Amplicon-Seq Kit (Bioo Scientific) in a 

final volume of 50 µL, containing 50 ng of the amplicons obtained in the first amplification reaction, 

NEXTflexTM DNA PCR Master Mix, 0.2 µM of one of the 16SV4R NEXTflex
TM

 antisense primer 

tagged with specific short sequences to identify each sample, and 0.2 µM of the 16SV4F NEXTflex
TM

 

sense primer, according to the manufacturer’s guidelines. The reaction was programmed at 98°C for 2 

min (1 cycle), followed by 30 cycles at 98°C for 45 s, 56°C for 1 min and 72°C for 90 s, with a final 
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extension (1 cycle) at 72°C for 10 min. The obtained amplicons were purified using the commercial 

system Agencourt
®
 AMPure

®
 XP (Beckman Coulter) and sent for sequencing at the Center for Functional 

Genomics, Luiz de Queiroz College of Agriculture, University of Sao Paulo in a MiSeq Illumina 

sequencing platform, using the paired-end strategy (2x – 250 bp). 

Sequence analyses 

    The reads obtained were analyzed using the tools available as implemented in the software QIIME 

(Caporaso, Kuczynski, et al., 2010). Reads were separated by their barcoding sequences (tags) and 

trimmed to remove residual primers. Reads were also subjected to quality filters to exclude sequences 

with quality values below 20 (Phred < Q20). Sequences obtained by combining sense and antisense reads 

were aligned against sequences available in the 13.5 GreenGenes database (Werner et al., 2012) using the 

PyNAST method (Caporaso, Bittinger, et al., 2010). Valid sequences were classified into operational 

taxonomic units (OTUs) with a 97% similarity threshold value being assumed using the ―UCLUST‖ 

method (Edgar, 2010). OTUs were classified with the recommended open method of reference in which 

they were grouped according to the closest matched taxon, depending on similarity values, following the 

limits for their taxonomic designation: > 97% of similarity classified at species level; between 95%-97% 

classified at genus level; between 90%-95% at family level; between 85%-90% at order level; 80%-85% 

at class level; and 77%-80% at phylum level.  

Data were rarefied using the samples with the smallest number of reads and then subjected to alpha-

diversity analysis employing the Shannon index. UniFrac distance analysis, a β-diversity measure that 

uses phylogenetic information (Lozupone et al., 2010) was subsequently used with each data set as a basis 

for hierarchical clustering with the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 

Principal Coordinates Analysis (PCoA). 

The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) 

software (Langille et al., 2013) was used to predict the potential functional contribution of the gut 
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microbiota. The GreenGenes database was used as a reference, but a different OUT-picking method was 

used to meet the requirements of PICRUSt. Therefore, in PICRUSt analysis we used the closed method in 

QIIME to classify the 16S rRNA sequences in OTUs. In PICRUSt, OTUs were normalized against the 

total number of copies of the 16S rDNA, while the metagenomes were predicted based on the Kyoto 

Encyclopedia of Genes and Genomes (KEGG). To evaluate changes induced by parasitism in the 

potential functional contribution of the gut microbiota of D. saccharalis and S. frugiperda larvae, the 

identified genes were grouped into four distinct categories: enzymes; nutrition; defense; biodegradation. 

This analysis used level 2 designations, namely ―enzyme families‖ for enzymes; ―amino acid metabolism, 

carbohydrate metabolism, cofactor and vitamin metabolism and lipid metabolism‖ for nutrition; 

―terpenoid and polyketide metabolism and biosynthesis of other secondary metabolites‖ for defense; and 

―xenobiotic metabolism and biodegradation‖ for biodegradation. 

All statistical analyses were performed using the Statistical Analysis of Metagenomic Profiles 

(STAMP) software (Parks et al., 2014). In one of the analysis only two experimental groups (parasitized x 

control) were considered, with the sampling period used as replicates. In this case, the White’s non-

parametric t-test was used for comparisons of the taxonomic and the functional groups, with bootstrap 

being used to calculate the confidence intervals. In the second analysis, the sampling periods were also 

considered as a factor of variation, and technical replicates were automatically generated by the software. 

Samples were then subjected to comparisons at the taxonomic level using the Fisher’s exact test, and the 

Newcombe-Wilson method was used to calculate the confidence intervals (95% nominal coverage). The 

Benjamini-Hochberg test for false discovery rate (FDR) was used to indicate the percentage of false 

positives (reported by q values), which should be expected among all significant subsystems. The G + 

Fisher test, combined with the Newcombe-Wilson corrected by Bonferroni test were used for functional 

predictions.  
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 RESULTS 

 16S rRNA sequences, and alpha and beta diversity indices 

Illumina sequencing of the V4 region of the 16S rRNA gene obtained from the gut microbiota of D. 

saccharalis larvae generated a total of 4,599,312 valid reads, while 4,427,969 valid reads were obtained 

for the gut microbiota of S. frugiperda larvae after standard quality filtering. Filtering yielded a mean of 

383,276 reads/sample, ranging from 256,911 to 459,908 reads/sample for the gut microbiota of D. 

saccharalis; for S. frugiperda, we obtained a mean of 368,997 reads/samples, ranging from 214,562 to 

459,690 per sample. The mean length of the reads obtained for the microbiota of both species was 253 bp.  

OTU rarefaction analyses from samples obtained for the gut microbiota associated with D. 

saccharalis and S. frugiperda were adequate. Analysis of the Shannon index indicated no significant gain 

in OTU diversity after sampling around 12,000 sequences of the gut microbiota for D. saccharallis and 

8,000 for S. frugiperda (Figure S1). Alpha-diversity analysis of individual groups did indicate variations 

in the diversity of microbes in the gut among the samples analyzed (Figure S1). PCoA based on 

unweighted UniFrac analysis explained 63% of the variation observed in the microbiota associated with 

the anteromedial region of the gut of D. saccharalis under the different experimental conditions, while 

PCoA based on weighted UniFrac analysis explained 87% of such variation (Figures S2). Differences 

between the unweighted and weighted analyses suggest the analyzed microbiota is more strongly 

influenced by the relative abundance of their different components than by the number of OTUs. 

Differences in the gut microbiota associated with the hindgut between parasitized and control larvae were 

more conspicuous at the sampling times studied (Figure S2). 

The distinct separation of the microbiota from the anteromedial gut region of D. saccharalis shown 

in the PCoA analysis gains a high level of bootstrap support in the UPGMA unweighted (50-100% 

bootstrap support) and weighted (75-100% bootstrap support) grouping analyses; albeit without the 

clustering of groups that are distinctly influenced by parasitism (Figure 1). The UPGMA analysis from 
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the weighted UniFrac also showed greater bootstrap support than the unweighted analysis, with 

supporting values between 75-100% for all groups, showing that differences in the abundance of the 

components from the community is a key factor in the separation of treatments (Figure 1). In both cases, 

there is a strong influence from the development stage of the host in determining the diversity of the 

microbiota associated with either the anteromedial region or hindgut. However, the only samples from 

parasitized larvae that resolved isolated from the control larvae in all analyses were those obtained at 5 

DAP.  

The microbiota of the anteromedial gut region of S. frugiperda also grouped in well-formed clusters 

depending on their sampling time and parasitization condition when using PCoA analysis (Figure S3). 

Seventy-three % of the total variability was explained by the unweighted UniFrac analyses and 97% by 

the weighted UniFrac analyses, also demonstrating the importance of the abundance of members of the 

gut microbiota in clustering the treatments. Similarly, 97% to 100% of the total variability of the 

microbiota of the foregut was explained by the unweighted and weighted analyses (Figure S3). 

UPGMA analyses strongly supported the clades formed from both gut regions, especially when the 

abundance of the different components of the gut microbiota (weighted UniFrac) were taken into account 

(bootstrap values > 75%) (Figure 2). However, bootstrap values were below 50% when UPGMA analyses 

considered exclusively the phylogenetic relationships among members of the microbiota (unweighted 

UniFrac) (Figure 2). Analysis did not separate the parasitized and control larvae in specific clusters nor 

the different stages of development analyzed, except for those after one day of parasitization. 

 Effect of parasitism by Cotesia flavipes in the composition of the host gut microbiota 

In general, the microbiota of the anteromedial gut region of D. saccharalis larvae is composed by 

Proteobacteria, followed by Firmicutes and Actinobacteria (Figure S4). Three classes of Proteobacteria 

were found. γ-Proteobacteria was the prevalent, and basically represented by unidentified OTUs of 

Enterobacteriaceae. Rubrobacter was the dominant representative of Actinobacteria, and Firmicutes was 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiz206/5682488 by guest on 22 D

ecem
ber 2019



 

 

represented by a dominant unidentified genus of Planococcaceae. Similarly, the hindgut of D. saccharalis 

larvae was predominantly inhabited by Proteobacteria, with Actinobacteria and Firmicutes representing 

larger relative proportions than those observed in the anteromedial gut region of D. saccharalis (Figure 

3). Proteobacteria in the hindgut was mainly represented by an unidentified Enterobacteriaceae, while an 

unidentified Planococcaceae and Streptomyces were the prevailing representatives of Firmicutes and 

Actinobacteria, respectively (Figure 3). 

No effects of parasitization were observed in the composition of the larval gut microbiota of D. 

saccharalis using only those genera with at least 5% relative abundance when sampling time was not 

considered (q-values > 0.05). However, significant differences in the diversity of the gut microbiota were 

detected when the sampling time was included in the analysis (Figure 4). A significant effect in the 

diversity of the gut microbiota of larvae of D. saccharalis was detected in parasitized larvae on day 1 

after the parasitization (1DAP), mainly due to the decreased abundance of OTUs belonging to 

Enterobacteriaceae (q-value <1e-15). The decrease observed for Enterobacteriaceae was not followed by 

any detected beneficial effect on the abundance of the remaining bacteria of the anteromedial region of 

the gut of D. saccharalis larvae. Enterobacteriaceae abundance was recovered at day 5 after 

parasitization (q-value <1e-15). Recovery of the relative abundance of Enterobacteriaceae and the 

increased abundance of Acinetobacter in parasitized larvae as compared to the non-parasitized larvae 

were followed by the decreased abundance of all remaining bacteria (q-value <1e-15). The abundance of 

Acinetobacter continued to increase at expenses of the decreased abundance of the remaining microbiota 

in parasitized larvae at later stages of parasitoid development (9DAP) (q-value <1e-15) (Figure 4). 

Parasitization negatively affected the abundance of Streptomyces and OTUs representing 

unidentified genera of Enterobacteriaceae and Xantomonadaceae in the hindgut of D. saccharalis larvae 

(q-values >0.05). On the other hand, all other OTUs increased in abundance 1 day after parasitization 

(Figure 4). The same pattern occurred 5 days after parasitization, except that the unidentified OTU of 

Xanthomonadaceae increased. Changes observed 9 DAP were less conspicuous, but Shingobium, 
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Streptomyces and the OTU representing the predominant unidentified Enterobacteriaceae increased. 

Abundance of the remaining OTUs decreased (q-value <1e-15) (Figure 4). 

The gut microbiota of both regions of the gut of nonpermissive larvae S. frugiperda was comprised 

almost exclusively by two taxa of Firmicutes, Enterococcus and an unidentified genus of Lactobacillales 

(Figures S5 and 5). The effects of parasitization in the gut microbiota of the nonpermissive host were 

similar to that observed for the permissive host. Changes in the abundance of OTUs were observed at 

different sampling times (Figure 6). Abundance of Enterococcus slightly increased (q-value <1e-15) and 

that of Lactobacillales decreased in the anteromedial gut region after 1 DAP (q-value <1e-15), a pattern 

observed in the remaining sampling times (Figure 6). Changes in the composition of the hindgut of larvae 

of S. frugiperda parasitized by C. flavipes were less regular. Abundance of Enterococcus and 

Lactobacillales in the hindgut decreased 1 DAP (q-value <1e-15). Enterococcus abundance was 

recovered at 5 DAP, but decreased again at 9 DAP (q-value <1e-15) (Figure 6).  

 Effects of parasitism by Cotesia flavipes in the potential functional contribution of the host gut 

microbiota 

Analysis of the potential functional contribution of the gut microbiota of larvae of D. 

saccharalis demonstrates metabolites produced by gut microbes are altered by parasitization by C. 

flavipes, which could impact the larval physiology (Figure 7). Such alterations in the potential functional 

contribution of the microbiota associated with the anteromedial gut region of D. saccharalis larvae after 

parasitization occurred regardless the sampling time (Figure 7). The changes induced in the composition 

of larvae gut microbiota of D. saccharalis parasitized by C. flavipes reduced the potential nutritional 

contribution of the gut microbiota to the host, mainly due to the decrease in the pyruvate metabolism of 

the gut microbiota (p-value <1e-15). A decrease in the enzymatic contribution of the gut microbiota was 

also observed but not in 5DAP, in which no differences were observed (p-value = 0.173). However, 

pathways related with the degradation of xenobiotics and defense mechanisms were increased (p-value 
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<1e-15). The potential contribution of the gut microbiota to host nutrition was decreased at 5 and 9 DAP, 

while the contribution to degradation of xenobiotics and defense against pathogens increased in 

parasitized larvae (p-value <1e-15) . Changes in the potential functional contribution of the gut 

microbiota of the hindgut of D. saccharalis were also detected (Figure 7). The contribution of the 

microbiota of the hindgut to biodegradation increased only at 1 DAP, followed by a decrease at 5 and 9 

DAP. The functional contribution of microbes from the hindgut to defense was increased only at 5 DAP 

(p-value <1e-15), but significantly reduced at 9 DAP (p-value <1e-15) (Figure 7). 

The potential functional contribution of the gut microbiota of the nonpermissive host S. frugiperda 

was also affected (Figure 8). Changes in the potential contribution of the microbiota associated with the 

anteromedial gut region at 1DAP were similar to that of the permissive host, D. saccharalis, with an 

increase in the potential contribution to biodegradation, a reduced contribution to nutrition (p-value <1e-

15), and no effects on enzymes production (p-value =1.067). On 5 DAP, there were no differences in 

enzymes production (p-value =0.173). Only nutrition was negatively affected on 5 DAP, but effects were 

reversed on 9 DAP (p-value <1e-15) (Figure 8). The potential functional contribution of the microbiota 

associated with the hindgut of S. frugiperda larvae was also altered (Figure 8). The potential contribution 

to biodegradation was increased while the remaining groups observed decreased at 1 DAP; at 5 DAP, the 

potential contribution to defense was increased (p-value <1e-15) and followed by biodegradation (p-value 

<1e-15); only biodegradation remained high at 9 DAP (p-value <1e-15) (Figure 8).  

DISCUSSION 

Parasitization by C. flavipes altered the composition and functional contribution of the microbiota 

associated with the anteromedial and posterior regions of the gut of the permissive D. saccharalis and the 

nonpermissive S. frugiperda hosts. The effects of parasitization on the gut microbiota were also 

influenced by the time after parasitization. Such effects indicate the mechanisms parasitoids employ to 

regulate their hosts in order to promote a suitable environment for offspring establishment and 
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development also result in alterations in host gut microbiota. Host parasitization by Cotesia flavipes led to 

quantitative and qualitative changes in the community of bacteria associated with the anteromedial and 

posterior regions of the gut of the studied hosts. Such changes resulted in alterations in the potential 

functional contribution of the gut microbiota of their hosts. Our data suggests the resulting changes in the 

contribution of the microbiota could benefit the natural enemy as a part of the process of host regulation, 

enhancing parasitoid survival and development. Thus, the host gut microbiota may be one more factor for 

consideration when studying the nutritional ecology of parasitoids, as well as being an interesting source 

of new processes for parasitoids to directly and/or indirectly regulate the host.   

Alterations in the gut microbiota of the permissive D. saccharalis and nonpermissive S. frugiperda 

hosts induced by the parasitism of C. flavipes characterize the process of dysbiosis, i.e., a process in 

which there is an alteration in the balance of the members of the microbe community without any specific 

changes in microbe diversity (Tamboli et al., 2004). These results indicate that alterations in the host’s 

gut microbiota are independent of the evolutionary history of the host-parasitoid interaction or the success 

of parasitoids to exploit preferable hosts.   However, the alterations in the gut microbiota of the 

nonpermissive host seems to be less conspicuous than those in the permissive host, D. saccharalis. Such 

differences are thought to relate with changes resulting from the required regulation of the host to support 

the growth and development of the parasitoid that occur in one host (permissive) but not in the other 

(nonpermissive). Thus, factors related to the growth and development of parasitoids must influence direct 

or indirectly the community of microbes associated with the host gut. During the growth and development 

of C. flavipes, several virulence factors produced by teratocytes and parasitoid larvae affect the host 

physiology (Dahlman, 1991; Asgari and Rivers, 2011; Mahmoud et al., 2011) and such virulence factors 

or the changes they induce in the host could individually or jointly influence the gut microbe community. 

Parasitization by C. flavipes results in the immunosuppression of the cellular and humoral responses  

(Lavine and Beckage, 1995; Mahmoud et al., 2011; Passos et al., 2014) Immunosuppression is mainly 

obtained through the inhibition of phenoloxidase activity, production of reactive oxygen species (ROS) 
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and expression of NF-κβ transcription factors (Gillespie And et al., 1997; Kanost and Gorman, 2008; Ryu 

et al., 2008).  Inhibition of NF-κβ transcription factors negatively affects the Toll and IMD signaling 

pathways (Bae and Kim, 2009; Bitra et al., 2012). Disruption of these pathways lower the levels of 

antimicrobial peptides (AMPs) produced by the host and increase host susceptibility to gut microbes 

(Shrestha et al., 2009). ROS and AMPs are key regulators of the gut microbial community, and 

alterations in their availability in the gut would certainly interfere with the maintenance of a desired 

microbial community (Charroux and Royet, 2012). But the immune response capacity of hosts parasitized 

by Cotesia species is partially recovered towards to the end of the parasitoid´s larvae development 

(Lavine and Beckage, 1996; Mahmoud et al., 2011). The recovery of the host immune response coincides 

with the slightly taxonomic differences in the gut microbiota of parasitized and non-parasitized hosts, as 

observed at 9 DAP. 

Host nutrition is extremely important in modulating the structure of the gut microbiota and is also 

targeted for regulation by parasitoids. Parasitoid development depends on the efficiency of food 

acquisition and utilization by the host (Harvey et al., 1995; Cônsoli and Vinson, 2004; Pennacchio et al., 

2014). Cotesia flavipes reduces the food intake of parasitized larvae but increases the time the food 

remains in the gut by reducing gut motility (Rossi et al., 2014). In this case, retention of food in the gut 

allows parasitized larvae to have similar nutritional indices than unparasitized larvae (Rossi et al., 2014). 

The high efficiency in food utilization in parasitized larvae with reduced food intake has been argued to 

be a consequence of the prolonged exposure of the food to the host digestive enzymes, due to the 

reduction in the motility of the gut and the regulation digestive enzymes (Dillon and Dillon, 2004; Engel 

and Moran, 2013; Rossi et al., 2014; Yun et al., 2014). These changes contribute to modifications in the 

gut microbiota (Dillon and Dillon, 2004; Engel and Moran, 2013; Rossi et al., 2014; Yun et al., 2014), 

and could influence the microbiota of hosts parasitized by C. flavipes. Stress is another source of variation 

that regulates the gut microbiota in humans (Bailey et al., 2011) and the changes parasitoids induce in 

their parasitized hosts, including significant alterations in the host hormonal balance (Pfister‐Wilhelm and 
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Lanzrein, 1996; Lee and Kim, 2004), are sources of physiological stress. Moreover, bacteria are known to 

have a bidirectional relationship with the gut sensorimotor function, not only by responding to changes in 

the gut motor activity, but also severely influencing the gut sensorimotor function when the gut 

microbiota changes (Quigley, 2011). However, additional research would be required to investigate if the 

dysmotility of the gut of D. saccharalis parasitized larvae is a result of regulation of the host 

neuropeptides involved in gut motility, and the consequent alterations in the gut microbiota or if 

dysmotility is induced by the alterations of the gut microbiota induced by host parasitization.  

Nevertheless, dysbiosis leads to drastic changes in host metabolism (Schilder and Marden, 2007; 

Sommer and Bäckhed, 2013). Dysbiosis can impair the contribution of the gut microbiota to the defense 

against pathogens (Azambuja et al., 2004; Azambuja et al., 2005; Cirimotich, Ramirez, et al., 2011; 

Bahia et al., 2014), metabolism of xenobiotics (Nikoh et al., 2011; Adams et al., 2013), food digestion 

(Kanost and Gorman, 2008; Anand et al., 2010; Krishnan et al., 2014),  and nutritional supplementation 

through nitrogen recycling, production of vitamins, and other nutrients (Ohkuma et al., 1996; Eichler and 

Schaub, 2002; Douglas, 2006; Hongoh et al., 2008; Nikoh et al., 2011). Dysbiosis induced in hosts 

parasitized by C. flavipes altered the potential functional contribution of the host gut microbiota and the 

consequent changes in the metabolism of the host may have direct and/or indirect beneficial roles in 

parasitoid development. Host-induced dysbiosis in hosts parasitized by C. flavipes could benefit the 

parasitoid through reduction of the host metabolic costs involved in food processing, mainly due the 

increased production of detoxifying enzymes that are reported to degrade anti-herbivory compounds 

(Hallahan and West, 1995; Thoss and Byers, 2006; Ibrahim et al., 2008) or to act on a range of substrates 

(Feyereisen, 1999; Anzenbacher and Anzenbacherova, 2001). Additionally, the increased representation 

of polyketide synthesis pathways in the gut microbiota of parasitized larvae indicates a potential increase 

of biosynthesis of antibiotics (Bangera and Thomashow, 1999), would result in an environment better 

protected against pathogenic interactions and in a healthier environment for parasitoid development. 

Increased xenobiotic metabolization and degradation and antibiotic biosynthesis by the gut microbiota in 
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larvae of D. saccharalis parasitized by C. flavipes would aid the production of a more suitable 

environment for the natural enemy development, without an increased need of energy investment by the 

insect host, thereby favoring parasitoid development.  

Differences in the functional contribution of the gut microbiota between the parasitized and 

unparasitized permissive host were detected even when no significant changes in the abundance of the 

taxonomic groups of the gut microbiota were observed. The gut microbiota of the larval anteromedial gut 

region of D. saccharalis parasitized by C. flavipes had a reduced contribution to nutrition, mainly due to 

the decrease in the metabolism of pyruvate of the gut microbes.  

Nevertheless, the host suffers major stage-specific alterations when parasitized in addition to natural 

variations linked to their own development, which influence the host’s gut microbiota. During the initial 

stages of parasitization, hosts are subjected to the maternal virulence factors, but upon egg eclosion 

virulence factors produced by teratocytes and the parasitoid larvae are also released, and affect the 

physiology of the host (Pinheiro et al., 2010; Strand, 2014). Thus, the developing parasitoid requires an 

active nutritional environment to support its development as the nutritional requirements differs during 

the growth and development of the parasitoid (Vinson and Iwantsch, 1980b; Harvey and Malcicka, 2016). 

The molting process is an important factor to influence the gut microbiota of larvae of holometabolous 

insects (47). The parasitized nonpermissive host S. frugiperda does not stop molting during parasitoid 

development. And molting from one instar to another has been reported as a modulator of the gut 

microbiota (Hammer et al., 2014). In the parasitized permissive host D. saccharalis no molt occurred as 

the host larvae were parasitized early in the last instar. Nevertheless, the physiological changes the larvae 

goes in preparation to the final molt to pupae are intense and induce changes in the gut microbiota 

(Johnston and Rolff, 2015). 

The gut microbiota identified in association with D. saccharalis and S. frugiperda shared bacteria at 

the phylum-level with hundreds of species of insects belonging to 21 taxonomic orders, with 
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Proteobacteria and Firmicutes being the dominant representatives in the gut microbiota of insects (Yun et 

al., 2014). The differences found between the gut microbiota in D. saccharalis, predominantly 

represented by Proteobacteria, and in S. frugiperda, predominantly represented by Firmicutes, may be 

due to differences related to their phylogeny, feeding habits and the diverse food substrates these insects 

feed on. These are the main factors reported to shape the composition of the gut microbiota of insects 

(Yun et al., 2014). The observed differences in the prevalence of Proteobacteria and Firmicutes in the gut 

microbiota seem to occur naturally among the different representatives of Lepidoptera. Proteobacteria 

was the predominant group in most of the analyzed representatives of Lepidoptera, while Firmicutes 

prevailed in about 1/3 of the studied lepidopteran species (Yun et al., 2014). 

Little is known regarding the role of gut bacteria in most insects, including lepidopterans. In the case 

of Lepidoptera, Enterococcus has been reported as a common associate. Enterococcus is a facultative and 

dominant anaerobic genus in the gut microbiota of S. frugiperda, with more than half of its sequences 

identified in all the larval ages analyzed here. Enterococcus has also been reported as a dominant member 

of the gut microbiota of Spodoptera littoralis, and suggested to contribute to host protection against 

pathogens due the synthesis and release of antimicrobial peptides (Shao et al., 2014). Curiously, 

Enterococcus was also significantly favored in the gut of larvae of S. frugiperda parasitized by C. 

flavipes, particularly in the anteromedial region where this bacterial genus was highly abundant. 

CONCLUSIONS 

The gut microbiotas of the permissive Diatraea saccharalis and the nonpermissive Spodoptera 

frugiperda hosts are dominated by different bacterial groups. Proteobacteria predominates in the 

permissive host, and Firmicutes in the nonpermissive host. The permissive and the nonpermissive hosts 

suffer from dysbiosis when parasitized by Cotesia flavipes. Alterations in the balance of the gut microbial 

community in parasitized hosts affect the potential functional contribution of the gut microbiota. Changes 

in the potential functional contribution of the gut microbiota in parasitized larvae are suggested to benefit 
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parasitoid development, although differences the biological significance of the variations detected is yet 

to be test. The mechanisms inducing host dysbiosis remain unclear, although the reported dysmotility 

observed in the permissive host parasitized by C. flavipes may serve as a source of alteration of the gut 

microbiota.  
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Figure 1 - UPGMA cluster analysis of unweighted (A, B) and weighted (C, D) Unifrac distances. The 

colors of the nodes of UPGMA analysis represent the bootstrap support: red: 75-100%; Yellow: 50-75% 

bootstrap support. The pie charts in ―C‖ and ―D‖ illustrate the relative abundance of the microbiota of the 

gut anteromedial region (ANT) (C) and hindgut (POS) (D) of D. saccharalis larvae at the phylum level, 

after different periods of development (1, 5 and 9 days) parasitized (P) or not (C) by C. flavipes. 
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Figure 2 - UPGMA cluster analysis of unweighted (A, B) and weighted (C, D) Unifrac distances. The 

colors of the nodes of UPGMA analysis represent the bootstrap support: red: 75-100%; Yellow: 50-75% 

bootstrap support. The pie charts in ―C‖ and ―D‖ illustrate the relative abundance of the microbiota of the 

gut anteromedial region (ANT) (C) and hindgut (POS) (D) of S. frugiperda larvae at the phylum level, 

after different periods of development (1, 5 and 9 days) parasitized (P) or not (C) by C. flavipes. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/advance-article-abstract/doi/10.1093/fem
sec/fiz206/5682488 by guest on 22 D

ecem
ber 2019



 

 

Figure 3 - Relative abundance (%) of bacterial genera of the microbiota of the gut anteromedial region (A, 

B) and the larval hindgut (C, D) of D. saccharalis parasitized (B, D) or not (A, C) by C. flavipes. 
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Figure 4 - Differences in relative proportion (%) of bacterial genera with 5% minimal abundance in the 

microbiota of the gut anteromedial region (ANT) (A) and the hindgut (POS) (B) of D. saccharalis larvae 

in different periods of development (1, 5 and 9 days), parasitized (P) or not (C) by C. flavipes.  
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Figure 5 -  Relative abundance (%) of bacterial genus of the microbiota of the gut anteromedial region (A, 

B) and the larval hindgut (C, D) of S. frugiperda parasitized (B, D) or not parasitized (A, C) by C. 

flavipes. 
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Figure 6 - Differences in relative proportion (%) of bacterial genera with 5% minimal abundance in the 

gut microbiota of anteromedial (ANT) (A) and hindgut (POS) (B) of S. frugiperda larvae in different 

periods of development (1, 5 and 9 days) after being parasitized (P) or not (C) by C. flavipes. 
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Figure 7 – Differences in the potential functional contribution (%) of the microbiota from the gut 

anteromedial region (A) and the hindgut (B) of D. saccharalis larvae in different periods of development 

(1, 5 and 9 days) after being parasitized (P) or not (C) by C. flavipes in relation to biodegradation, 

defense, nutrition and production of enzymes. 
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Figure 8 – Differences in potential functional contribution (%) of the microbiota from the gut 

anteromedial region (A) and the hindgut (B) of S. frugiperda larvae in different periods of development 

(1, 5 and 9 days) after being parasitized (P) or not (C) by C. flavipes in relation to biodegradation, 

defense, nutrition and production of enzymes. 
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