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A B S T R A C T

Alzheimer’s disease (AD) is a neurodegenerative disease leading to cognitive and memory impairment. This
study aimed at investigating the therapeutic and preserving effects of vinpocetine on amyloid beta (Aβ)-induced
rat model of AD. Sixty male adult Wistar rats were randomly divided into 6 groups (n=10 per group) as follows:
1; control, 2; sham, 3; Aβ, 4; pre-treatment (vinpocetine+Aβ): oral gavage administration of vinpocetine at
4 mg/kg for 30 days followed by intracerebroventricular (ICV) injection of Aβ, 5; treatment (Aβ + vinpocetine):
Aβ ICV injection followed by vinpocetine administration for 30 days, 6; pre-treatment+ treatment
(vinpocetine+Aβ + vinpocetine): vinpocetine administration for 30 days before and 30 days after AD in-
duction. Following treatments, the animals’ learning and memory were investigated using passive avoidance
learning (PAL) task, Morris water maze (MWM), and novel object recognition (NOR) tests. The results de-
monstrated that Aβ significantly enhanced escape latency and the distance traveled in the MWM, decreased step-
through latency, and increased time spent in the dark compartment in PAL. Vinpocetine ameliorated the Aβ-
infused memory deficits in both MWM and PAL tests. Administration of vinpocetine in the Aβ rats increased the
discrimination index of the NOR test. It also significantly diminished the nitric oxide and malondialdehyde levels
and restored the reduced glutathione (GSH) levels. Vinpocetine can improve memory and learning impairment
following Aβ infusion due to its different properties, including antioxidant effects, which indicates that vinpo-
cetine administration can lead to the amelioration of cognitive dysfunction in AD.

1. Introduction

Alzheimer’s disease (AD), as a degenerative brain disease, is re-
garded as one of the most common types of dementia [1]. Brain al-
terations resulting from AD can appear before its symptoms, such as the
emergence of memory impairment and a reduction in thinking cap-
abilities [2]. The accumulation of the amyloid beta (Aβ) protein (named
Aβ plaques) outside of the neurons and also agglomeration of an unu-
sual form of the protein tau (named tau tangles) inside the neurons are
two common types of brain alterations, which result in the deteriora-
tion of neurons leading to memory loss and other symptoms of AD [3].

In AD, some changes can be found in the expression of phospho-
diesterases (PDEs), such as PDE1, PDE4, PDE9 and PDE10 [4]. Eleven
families of PDE isoforms have been identified [5,6]. 1A, 1B, and 1C are

three subtypes of PDE1, which have been demonstrated to be dis-
tributed in certain areas of the nervous system. These subtypes can be
observed in the cerebral cortex, hippocampus, striatum, and thalamus,
and also a great deal of PDE1B is available in the nucleus accumbens
and caudate nucleus [7]. In the AD brain tissue, PDE10 and PDE1, as
the cGMP and cAMP special enzymes, are extremely expressed [8].
Accordingly, PDE inhibitors, due to their effect on synaptic function,
can presumably be helpful and accessible to treat AD [4,9].

Cyclic nucleotides (cAMP/cGMP) are omnipresent second messen-
gers, which are upregulated upon neuronal activity. PDEs are enzymes,
which hydrolyze and inactivate these second messengers, and as a re-
sult, can terminate signaling of cAMP and cGMP [5,6]. These second
messengers have been shown to be greatly associated with motor and
cognitive mechanisms and also controlling signal conduction and
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synaptic transfer of diverse neurotransmitters in the brain as a cellular
function [4,10]. It has been shown that cAMP and cGMP facilitate at-
tachments to the protein kinase A (PKA) and protein kinase G (PKG), as
their target enzymes [11]. In addition, various expression processes,
such as cyclic nucleotide-mediated transactivation of brain-derived
neurotrophic factor (BDNF) [12] and cAMP response element-binding
protein (CREB) [13] have been known to play an important role in
cognitive function [14].

Phosphodiesterase inhibitors (PDE-Is) have recently been con-
sidered as possible candidates to treat dementia as well as AD [15].
Vinpocetine is an alkaloid and one of the PDE-Is, which is regarded as a
classic inhibitor of PDE1 function [16,17], especially the PDE1B sub-
type [18]. It also facilitates long-term potentiation (LTP) [19,20] and
has strong anti-inflammatory [21] and antioxidant [22,23] activities.
Vinpocetine can increase cerebral blood flow [24,25] and selectively
inhibit voltage-sensitive sodium (Na) channels [26], which are re-
sponsible for its neuroprotective and anticonvulsant activities [27].

Effectiveness of Vinpocetine on cognitive impairment, dementia,
and especially AD has been reported in several studies. In this regard,
the present study aimed at investigating the effects of long-time ad-
ministration of vinpocetine on oxidative stress biomarkers and learning
and memory in rat models of AD using three common accepted learning
and memory tests, including passive avoidance learning (PAL) task,
novel object recognition (NOR) and Morris water maze (MWM) tests.

2. Materials and methods

2.1. Animals

Sixty adult male Wistar rats (230 ± 15 g) were prepared from the
Animal House of Hamadan University of Medical Sciences, Hamadan,
Iran to perform the study. They were placed in cages (two per cage) in
an animal room at a temperature of 22–25 °C with 60 ± 5 % com-
parative humidity and with a 12-h light-dark cycle (lights on at 7:00, off
at 19:00). The rats had free access to water and dry pellets. The treat-
ment procedures and the protocols of animal health surveillance were
in accordance with the Veterinary Ethics Committee of the Hamadan
University of Medical Science, based on the National Institutes of
Health Guidelines for studies involving animals (NIH Publication
80–23, 1996).

2.2. Experimental design

The rats were randomly divided into the six following groups
(n=10): 1) The control group (without any intervention), 2) sham
group, which received phosphate-buffered saline (PBS) via in-
tracerebroventricular (ICV) injection as a solvent of Aβ1– 42, 3) The Aβ
model group, which received a single injection of Aβ into the lateral
ventricle, 4) The pre-treatment group (vinpocetine+Aβ), which re-
ceived oral administration of vinpocetine (4mg/kg) for 30 days prior to
AD induction, 5) The treatment group (Aβ + vinpocetine), which re-
ceived oral administration of vinpocetine (4mg/kg) following AD in-
duction for 30 days, and 6) The pre-treatment+ treatment group
(vinpocetine+Aβ + vinpocetine), which received vinpocetine (4mg/

kg) for 30 days, before and 30 days after AD induction. The experi-
mental timeline is shown in Fig. 1.

2.3. The main reagents and drugs

Lyophilized powder Aβ1– 42 (Tocris Bioscience, Bristol, UK; 100 μg)
was dissolved in 100 μL of PBS as a solvent and incubated at 37 °C for 7
days before utilization, which is essential to provide amyloid fibrils as a
neurotoxic factor [28].

2.4. Clinical dose of vinpocetine conversion

Vinpocetine (ethyl apovincaminate; Eburnamenine-14-carboxylic
acid) was used once a day at a dosage of 4mg/kg [29,30] for 30 con-
secutive days by oral administration (gavage).

2.5. Aβ injections and surgery

To establish the animal model of AD, the rats were anesthetized
using anesthetics (10mg/kg of xylazine plus 100mg/kg of ketamine),
and they then were placed in a stereotaxic device (Stoelting Co., Wood
Dale, IL, USA). The rats’ body temperature was kept at 37 °C using an
electrically protected heating pad through the Aβ injection procedure
[31]. Through a tiny hole 5 μl of Aβ1–42 was unilaterally injected into
the right lateral ventricle (medial/lateral: 1.4 mm, dorsal/ventral:
4.0 mm, and anteroposterior: -0.8 mm from Bregma) via a 5 μl Hamilton
microsyringe and its stainless steel cannula (Hamilton Laboratory
Products, Reno, NV, USA). Injections lasted 5min and the needle of
microsyringe was kept in the hole for 2min to ensure the proper in-
jection of Aβ1–42. The rats in the sham group were injected by the
same volume of PBS as the Aβ1- 42-injected rats [32]. After surgeries,
the rats were separately placed in their cages and had free access to the
water and food [33].

2.6. Behavioral study

2.6.1. Passive avoidance learning (PAL) test
2.6.1.1. Passive avoidance instrument. In this research, the passive
avoidance apparatus (step-through method) was used to evaluate
passive avoidance memory and learning [34,35]. The apparatus
consists of a light compartment (22× 22×32 cm) made by crystal
plastic and a dark compartment made by the opaque and dark plastic
(22×22×32 cm). The floor of the two compartments is made of
3mm diameter stainless steel rods spaced 1 cm, separately. The floor of
the dark compartment can be electrified by a shock generator (Burj
Sanat Co. Tehran, Iran). A 6 cm×8 cm rectangular gateway is placed
between both compartments, which can be closed by a turbid guillotine
door [34].

2.6.1.2. Training procedure. For adaptation, the rats were first subjected
to two trials. They were located in the light compartment of the
apparatus facing away from the door and 30 s later, the guillotine door
was opened, manually. The rats moved to the dark compartment, based
on their natural tendency. In the next step, the door was closed and

Fig. 1. Experimental timeline. Following 30 days of vinpocetine administration (4mg/kg) in experimental groups, to generate a rat model of Alzheimer's disease, the
rats were anesthetized with xylazine (10mg/kg) and ketamine (100mg/kg) and transferred to a stereotaxic device. The amyloid beta (Aβ) solution (2 μL) was
injected intraventricularly at a rate of 1 μL/2min. After recovery, vinpocetine was re-administered by daily oral gavage for 30 days. The animals’ memory and
learning were then investigated using passive avoidance learning (PAL) task, and Morris water maze (MWM) and novel object recognition (NOR) tests. At the end of
the experiments, the levels of the biomarkers of oxidative stress were determined after serum analysis.
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after spending 30 s in the dark compartment, the rats were returned
into their home cages. This habituation trial was repeated after 30min
and pursued after the same pause by the first acquisition trial. When the
rats were located with their entire four claws in the dark compartment,
the entrance latency to the dark compartment (step-through latency
(STL)) was recorded. The guillotine door was closed after the rats
instinctively entered the dark compartment and an electrical foot shock
was applied (50 Hz, 1.2 mA) for 1.5 s. The animals were kept in the dark
compartment for 30 s and were then returned to their home cages. The
experiment was repeated 2min and 120 s later. Whenever the rats
reentered and placed all their four claws in the compartment, they were
received a foot-shock. By remaining the animal in the light
compartment for two continuous min, training was terminated and
the number of trials was recorded. The number of trials (entries into the
dark chamber) (NTa) and also the step-through latency in the
acquisition trial (STLa) were recorded.

2.6.1.3. Retention test. Long-term memory was appraised 24 h after the
PAL acquisition trial. Similar to the PAL training session, the animals
were kept in the light compartment for 10 s, then the door was opened.
Then, the step-through latency in the retention trial (STLr) and the time
spent in the dark section (TDC) were recorded for 10min. Through the
retention test, the electric shocks were not applied to the floor. If
animals did not enter the dark compartment within 300 s, the test was
stopped and the extra time of 300 s was considered [36].

2.6.2. Evaluation of spatial memory
The Morris water maze (MWM) test is used to assess spatial learning

and memory in animal models [37,38]. The MWM is composed of a
circular pool (65 cm height, 185 cm in diameter) filled with water to a
depth of 45 cm maintained at 25 ± 1 °C. The pool (painted black) is
separated into four equal quadrants with four start points denominated
as the East (E), West (W), North (N), and South (S). An escape route (an
invisible platform that is 10 cm in diameter) is situated 1.5 cm below
the water surface in the center of the northern quadrant. This distin-
guishing quality remained consistent for all rats across the training
trials. This stage of training was performed between 10:30 AM and
12:30 PM for 4 days, including two sections with four trials. Each rat in
all groups was allowed to swim for 60 s, from start points (E, W, N, and
S) in the pool to reach the hidden platform. The rats were remained in
the platform for 30 s after detecting the hidden platform. In this pro-
cedure, an inter-trial interval of 5min was also regarded. A video
camera is fixed above the tank connected to an exploring system to
record the requested parameters, including escape latency to reach the
hidden platform and the distance traveled by swimming. The platform
was removed from the pool on day 5, and the animals were subjected to
swimming for 1min, and the probe trial was then performed. In this
phase, the time spent in the target quadrant was recorded [32].

2.6.3. Novel object recognition test
The NOR is designated to assess the visuospatial memory of animals

in a familiar environment [39,40]. Each animal, 24 h before testing was
located in the NOR apparatus (60×60×45 cm) for 20min for accli-
matization, their exploratory behavior does not interfere with their
interaction with objects. Twenty-four hours later, two similar squares or
round targets were placed in the box and the rats were placed sepa-
rately at the midpoint and beside the front wall of the box with their
heads positioned opposite to the objects. In the familiarization phase,
the rats were allowed to explore the objects for 10min, and then re-
turned to their cages. One hour later, one of the familiar objects was
exchanged with a novel object used in the testing phase, and then the
rats were located in the apparatus with a novel object and the familiar
object for 5min. This process was recorded by a video camera [41]. The
time spent exploring the novel object to the total time spent with both
objects was defined as the discrimination ratio. The testing timeline
indicates the time spent exploring two objects. Object presentation was

counterbalanced and randomized across the groups and rats. The field
and the objects were cleaned through the intervals with 70 % ethanol to
ensure the absence of olfactory cues [39].

2.7. Biochemical parameters

The animals were anesthetized with ether, and blood sampling was
done from the inferior vena cava after behavioral studies. Plasma
samples were separated from the whole blood for estimation and ana-
lysis of the oxidative stress biomarkers levels and the biochemical
parameters.

2.7.1. Estimation of malondialdehyde (MDA)
According to Ohkawa et al., the level of lipid peroxidation was as-

sessed as the concentration of thiobarbituric acid-reactive mal-
ondialdehyde (MDA) production [42]. Briefly, MDA was evaluated
based on the following procedure: 1) mixing 1.0ml of 1 % thiobarbi-
turic acid and 1.0ml of 20 % trichloroacetic acid reactive substances
with 100 μL of the supernatant, 2) incubating the solution for 80min at
100 °C, 3) cooling the solution on ice and centrifuging for 20min at
3000 rpm, and 4) reading the absorbance of the supernatant at 532 nm
[31]. The level of MDA was expressed as nmol/mg protein.

2.7.2. Evaluation of the reduced glutathione (GSH)
The reduced glutathione (GSH) was measured based on the tech-

nique developed by Ellman (1959) [43] as follows: 1) mixing 1ml of 4
% sulfosalicylic acid with 1ml supernatant and cold digesting for
60min at 4 °C, 2) centrifugation of the samples for 15min at 1200×g,
3) adding 0.2 ml of 5,5′-Dithiobis (2-nitrobenzoic acid) (DTNB) and
2.7 ml of phosphate buffer (0.1M, pH 8) to 1ml of the supernatant, and
4) measuring the yellow color produced directly using a spectro-
photometer at 412 nm. Condensation of GSH in the supernatant was
measured by a standard curve and represented as μmol per mg protein
[44].

2.7.3. Estimation of nitrite as an indicator of nitric oxide (NO) production
Nitrite accumulation in the supernatant as an index of NO produc-

tion representative of a free radical was estimated by colorimetric test,
based on the method developed by Green et al. using Greiss reagent (2.5
% phosphoric acid, 1 % sulfanilamide, and 0.1 % N-(1-naphthyl)
ethylenediamine dihydrochloride) [45]. The procedure is briefly as
follows: 1) mixing the equal volumes of supernatant and Greiss reagent
and incubating for 10min at 25 °C in the dark, and 2) assaying the
absorbance by spectrophotometer at 540 nm. Condensation of the ni-
trite in the supernatant was measured using a sodium nitrite standard
curve and represented as μmol per mg protein [44].

2.8. Data analysis

Data were analyzed using one-way and two-way analysis of variance
(ANOVA) confirmed by Tukey's Post Hoc test for multiple comparisons.
Values are expressed as mean ± S.E.M. P<0.05 was assumed as sta-
tistically significant.

3. Results

3.1. The effect of vinpocetine on memory performance in the PAL test in the
Aβ-injected rats

3.1.1. PAL acquisition
In the acquisition test, no significant difference was observed among

the groups in STLa (F5, 54= 1.84, P=0.1224; Fig. 2A). It showed that
the exploratory and intrinsic behavior of the rats in the studied groups
did not differ in the dark compartment. In addition, there was no sig-
nificant difference among the groups in NTa (F5, 54=1.396,
P= 0.2416; Fig. 2B).
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3.1.2. PAL retention
Twenty-four hours after the PAL acquisition trial, a long-term

memory retention test was done and a significant difference was found
in STLr among the experimental groups (F5, 54= 6.856, P < 0.0001;
Fig. 3A). The STLr of the Aβ group was significantly reduced compared
with the control and sham groups (P < 0.001; P < 0.01). STLr values
in the pre-treatment, treatment, and pretreatment+ treatment groups
were significantly higher than the Aβ group (P < 0.01 and P < 0.001,
respectively).

There was no significant difference in STLr values in the pretreat-
ment, treatment, and pretreatment+ treatment groups in comparison
with the control group. Moreover, the TDC value differed significantly
among the experimental groups (F5, 54= 7.838, P < 0.0001; Fig. 3B).
TDC in the pretreatment, treatment, and pretreatment+ treatment
groups was significantly lower than that of the Aβ group (P < 0.001,
P < 0.0001), whereas TDC in the Aβ group was significantly more
than the control and sham groups (P < 0.001). There was no sig-
nificant difference in the TDC results in the pretreatment, treatment,
and pretreatment+ treatment groups than the control group.

3.2. Effects of vinpocetine administration on memory performance in MWM
task in the Aβ-injected rats

The results obtained through the four training days demonstrated
that all groups spent less time to find the hidden platform (escape la-
tency). However, in the Aβ group, it was less than other experimental
groups (Fig. 4A). Through this period, there were significant differences
between the escape latency in the AD model and the control and sham
groups (P < 0.0001, P < 0.001, and P < 0.01, respectively). Ac-
cording to the results, vinpocetine administration (pre-treatment,
treatment, and pre-treatment+ treatment groups) significantly re-
duced escape latency compared with the Aβ group through all four days
(P < 0.0001, P < 0.001, P < 0.01, and P < 0.05, respectively).

A significant difference was observed in the distance traveled in the
Aβ group on the day 1 and day 2 compared with the control and sham
groups (p < 0.0001 and p < 0.05, respectively; Fig. 4B). Vinpocetine

Fig. 2. Effect of vinpocetine administration in the ICV amyloid beta (Aβ)-in-
jected rats on the step-through latency in the acquisition trial (STLa) (A) and
the number of trials to acquisition (NTa) (B) of passive avoidance learning
(PAL) task in all experimental groups.

Fig. 3. Effect of vinpocetine administration in all experimental groups on the
step-through latency in the retention trial (STLr) (A) and the time spent in the
dark compartment (TDC) (B) in the retention test, which was performed 24 h
after the passive avoidance learning (PAL) acquisition trial. Values are ex-
pressed as mean ± S.E.M. ***p < 0.001 compared with the control group. ##
p < 0.01 and ### p < 0.001 compared with the sham group. $$ p < 0.01, $
$$ p < 0.001, and $$$$ p < 0.0001 in comparison with the amyloid beta
(Aβ) group.
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administration (pre-treatment, treatment, pre-treatment+ treatment
groups) caused a significant reduction in the distance traveled com-
pared with the Aβ group through the experiments (P < 0.0001,
P < 0.001, P < 0.01, and P < 0.05, respectively).

The mean time spent in the target quadrant was studied in the probe
trial. The mean time spent in the target quadrant of the AD model group
was diminished significantly in comparison with the control and sham
groups (P < 0.0001). Based on the results, the pre-treatment, treat-
ment, and pre-treatment+ treatment groups spent more time in the
target quadrant than the Aβ group (Fig. 4C).

3.3. The effect of vinpocetine administration on memory performance in
NOR-related cognitive abilities in the Aβ-injected rats

The discrimination index is considered as an indicator of the NOR
test. It is calculated as the time spent exploring the novel object divided
by the total time exploring both familiar and novel objects on the
second day of the test. The results of one-way ANOVA demonstrated a
significant difference in the discrimination index of the NOR test among
the groups (F5, 54=8.189, P < 0.0001; Fig. 5). Accordingly, a

significant decrease was observed in Aβ group compared with the
control and sham groups (P < 0.01), whereas there was a significant
increase in the pre-treatment, treatment, and pre-treatment+
treatment groups in comparison with the Aβ group (P < 0.05,
P < 0.001, and P < 0.0001, respectively). This indicates that treat-
ment and pre-treatment with vinpocetine could improve the visuospa-
tial memory abilities in the Aβ group (Fig. 5).

3.4. Efficacy of vinpocetine in the ICV Aβ-injected rats on serum
malondialdehyde (MDA) levels

MDA levels were significantly increased in the ICV Aβ-injected rats
in comparison with the control and sham groups (P < 0.0001),
whereas the pre-treatment, treatment, and pre-treatment+ treatment
of the ICV Aβ-injected rats with vinpocetine significantly reduced MDA
levels compared with the Aβ rats group (P < 0.001, P < 0.0001, and
P < 0.0001, respectively; Fig. 6).

Fig. 4. The mean of latencies to discover the hidden platform
in the Morris water maze (MWM) test. The bars indicate the
average latency of four successive trial days (A), and the mean
of the distance traveled in the MWM (B). The bars demonstrate
the mean time spent in the target quadrant in MWM on the
fifth day (C). Values are expressed as mean ± S.E.M.
*p < 0.05, **p < 0.01, and ***p < 0.001 compared with
the control group. ## p < 0.01 and ### p < 0.001 in
comparison with the sham group. ^ p < 0.05, ^^ p < 0.01, ^^^
p < 0.001, and ^^^^ p < 0.0001 compared with the amyloid
beta (Aβ) group. $ p < 0.05, $$ p < 0.01, $$$ p < 0.001,
and $$$$ p < 0.0001 in comparison with the Aβ group.
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3.5. Efficacy of vinpocetine in the ICV Aβ-injected rats on serum glutathione
(GSH) levels

GSH levels declined significantly in the ICV Aβ-infused rats than the
control and sham groups (P < 0.0001 and P < 0.01, respectively);
however, the pre-treatment, treatment, and pre-treatment+ treatment
of these rats with vinpocetine significantly increased GSH levels com-
pared with the Aβ rats group (P < 0.05, P < 0.05, and P < 0.001,
respectively; Fig. 7).

3.6. Efficacy of vinpocetine in the ICV Aβ-injected rats on serum nitrite
(NO) levels

Nitrite levels as an indicator of NO (a free radical) increased sign-
ificantly in the ICV Aβ-injected rats compared with the control and
sham groups (P < 0.0001). However, treatment and pre-treatment+
treatment of these rats with vinpocetine significantly decreased nitrite
levels in comparison with the Aβ rats (P < 0.01 and P < 0.0001, re-
spectively; Fig. 8).

4. Discussion

The ICV Aβ [1–42] injection induced a significant memory and
learning impairment in the NOR, MWM, and PAL tasks in rats. These
three types of memory and learning tests in the current research were
considered to differentiate the consequence of the pre-treatment and
treatment effects on different types of memory and learning. In this
regard, passive avoidance learning and memory were evaluated by the
passive avoidance task, spatial memory was assessed using the MWM
test, and visual recognition memory was investigated by the NOR test.
In the current study, ICV Aβ [1–42] injection resulted in a decrease in
the STLr, an increase in TDC in the PAL test, and a reduction in the
discrimination index in the Aβ group compared with the control group
in NOR test. In addition, it caused an increase in the time spent to reach
the platform as well as the distance traveled to reach the platform in the
MWM test as spatial memory. In AD, due to brain tissue damage,
memory and learning processes are impaired. Many experimental stu-
dies have shown a decline in memory and learning in AD models, in-
cluding the reduced memory and learning in behavioral tests, such as
the MWM test and passive avoidance learning task [46–48]. In another
study, ICV injections of Aβ [1–42] in mice caused memory impairment
in the Y-maze as well as MWM tests [49].

This study revealed that learning and memory deterioration fol-
lowing ICV injection of Aβ could be improved by vinpocetine. The AD
rats that received Aβ had deficiencies in passive avoidance learning and
spatial learning as demonstrated by the impaired acquisition and re-
tention in PAL, MWM, and NOR tasks. Nevertheless, pre-treatment and

Fig. 5. Exploratory preference in the novel object recognition (NOR) test and
the discrimination index on the second day. The blocks show the exploration
preference in the NOR test 24 h after habituation. Values are expressed as
mean ± S.E.M. **p < 0.01 compared with the control group. ## p < 0.01 in
comparison with the sham group. $ p < 0.05, $$$ p < 0.001, and $$$$
p < 0.0001 compared with the amyloid beta (Aβ) group.

Fig. 6. Effects of vinpocetine administration in the ICV amyloid beta (Aβ)-in-
jected rats on serum malondialdehyde (MDA) levels. Values are expressed as
mean ± S.E.M (n=10). MDA levels significantly increased in the Aβ group
compared with the control and sham groups (**** P < 0.0001 and ####
P < 0.0001, respectively). Vinpocetine significantly declined serum levels of
MDA than the Aβ group ($$$ P < 0.001 and $$$$ P < 0.0001 compared with
the Aβ group).

Fig. 7. Effects of vinpocetine administration in the ICV amyloid beta (Aβ)-in-
jected rats on serum glutathione (GSH) levels. Values are expressed as
mean ± S.E.M (n= 10). GSH levels significantly decreased in the Aβ group
compared with the control and sham groups (**** P < 0.0001 and ##
P < 0.01, respectively). Vinpocetine significantly increased GSH level than the
Aβ group ($ P < 0.05 and $$$ P < 0.001 compared with the Aβ group, and
P < 0.5 compared with control group).
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treatment with vinpocetine could significantly ameliorate learning and
memory impairment following the ICV injection of Aβ. This effect was
more effective through both pretreatment and treatment before and
after AD induction via Aβ injection. Aβ plays a key role in the patho-
physiology of AD and also there is a close interaction between the role
of Aβ and the neuroinflammatory process of AD [50].

Vinpocetine, as an antioxidant and a PDE1, has shown to be effec-
tive in improving memory and learning impairments. In ICV strepto-
zocin-induced rats, which is a model that almost mimics cognitive
impairments induced by AD, treatment with vinpocetine restored their
performance in the passive avoidance and the MWM tests [44]. Indeed,
vinpocetine has been reported to improve memory deficits in other
experimental patterns, like hypoxia, scopolamine, and streptozocin-in-
duced retrieval impairment in rats and it has also shown effective in
clinical studies on patients suffering from depression, psychosyn-
dromes, cognitive impairment, AD, and other dementia [18,44,51–54].

Oxidative stress refers to an imbalance between the production of
reactive oxygen species (ROS) and the antioxidant defense system,
which buffers the system from oxidative damage [55,56]. Oxidative
stress can cause disruptions in normal mechanisms of cellular signaling
[57]. More severe oxidative stress can cause cell death, and even
moderate oxidation can trigger apoptosis, whereas more intense
stresses may lead to necrosis [58]. The role of oxidative stress has been
implicated in the pathogenesis of several diseases [55,56,59]. The re-
active species produced in oxidative stress can cause direct damage to
the DNA [60]. Since the brain is highly vulnerable to oxidative stress
[61], pathologically induced oxidative stress could induce brain dys-
function and result in impaired learning and memory [62,63]. Oxida-
tive stress may be associated with learning and memory deficits fol-
lowing oxidative stress-induced brain damage in animal models [64].
Oxidative stress has widely shown to be increased in the AD brain, and
also ROS has indicated to play an important role in the pathogenesis of
neuronal degeneration and death in this disorder [65,66]. It has been
indicated that several oxidative injuries can be found in the AD brain,
depending on both indication pathologies (senile plaques and

neurofibrillary tangles) as well as natural appearance of pyramidal
neurons [44,67–69]. Although ROS have a significant effect on the
neuronal failure and death more often in different neurodegenerative
disorders, such as AD [70], the effect of vinpocetine on oxidative stress
as a potential neuroprotective strategy has also been investigated.

Aβ is a major source of oxidative free radicals and/or a toxic agent
in AD [70]. It has widely approved that the aggregation of Aβ is asso-
ciated with its neurotoxicity and forms free radicals. Aβ has shown to
cause H2O2 agglomeration in neuroblastoma cultures as well as in the
cultured hippocampal neurons [65,66]. Electron paramagnetic re-
sonance analysis of gerbil synaptosomes and in vitro analysis demon-
strated that Aβ induced lipid peroxidation and generation of free ra-
dical peptides [70,71]. Aβ can cause the generation of ROS in cell
cultures, and can also produce an overplus of superoxide radicals in
endothelial structure leading to vascular abnormalities and neurode-
generation interfered by free radicals in AD [70,72]. In contrast, the
marked antioxidant activity, due to the destruction of hydroxyl radicals
is one of the mechanisms leading to neuroprotection presented by
vinpocetine [22,73]. It has reported that the inhibitory effects of nat-
ural products on Aβ fibril formation are related to their antioxidative
properties [74]. In this respect, investigations on the in vitro models of
oxidative stress have reported the inhibitory effects of vinpocetine
against ROS [75]. Accordingly, the potential neuroprotective effects of
PDE1 inhibitors has been shown [76], which can especially be helpful
in treating neurodegenerative disorders.

In this experiment, Aβ increased the levels of MDA and NO, whereas
it decreased the levels of GSH in the serum of AD model animals.
Consistent with our results, Aβ could increase MDA levels and reduce
GSH levels in AD and the experimental model of AD, as well
[44,67–69]. For buffering free radicals in brain tissue, the antioxidant
system utilizes the reduced GSH as the most abundant non-protein thiol
source [77]. The reduced GSH is a component of the antioxidant system
with a thiol group as a reducing agent in its structure [77]. GSH par-
ticipates directly in the neutralization of free radicals and reactive
oxygen compounds, and also maintaining exogenous antioxidants, such
as vitamins C and E in their reduced (active) forms [77–79]. In addi-
tion, GSH plays an important role in the progression of the cell cycle,
including cell death [80]. GSH levels regulate redox changes to nuclear
proteins necessary for the initiation of cell differentiation. Differences
in GSH levels can also determine the expressed mode of cell death, such
as apoptosis or cell necrosis [81]. GSH removes H2O2 and organic
peroxides by glutathione peroxidase (GPxs) [82]. A decrease in the
levels of GSH leads to the defective H2O2 clearance and increases OH
level as an oxidative stress inducer in the brain [77,83]. On the other
hand, the increased levels of H2O2 result in the peroxidation of poly-
unsaturated fatty acids leading to the formation of end products of lipid
peroxidation, like MDA [77,84]. This compound is a reactive aldehyde
and is one of the many reactive electrophile species that cause toxic
stress in cells and forms protein covalent adducts as the advanced li-
poxidation end products (ALEs), similar to the advanced glycation end
products (AGEs) [85]. The production of this aldehyde is used as a
biomarker to measure the level of oxidative stress in an organism
[86,87].

In this study, vinpocetine increased the levels of GSH and decreased
the levels of MDA and NO in the serum of Aβ-induced AD in rats. It has
been reported that the marked antioxidant activity related to the
scavenging of hydroxyl radicals is a mechanism responsible for the
neuroprotection represented by vinpocetine, which is consistent with
our results [73]. Based on the previous studies, vinpocetine has several
various mechanisms, which are effective in its antioxidant activity.
Vinpocetine blocks the sodium channels, by which the accumulation of
sodium in neurons ameliorates the excitotoxic neuronal injury that may
be beneficial in lowering the toxic effects of oxidative stress caused by
anoxia and other disorders in the brain [88–90]. In one study, vinpo-
cetine lowered the increase of [Na+]i induced by veratridine, by in-
hibiting the voltage-dependent Na+ channels [91]. In another study,

Fig. 8. Effects of vinpocetine administration in the ICV amyloid beta (Aβ)-in-
jected rats on serum nitric oxide (NO) levels. Values are expressed as
mean ± S.E.M (n= 10). The levels of NO significantly increased in the Aβ
group compared with the control and sham groups (**** P < 0.0001 and
#### P < 0.0001, respectively). Vinpocetine significantly decreased NO le-
vels compared with the Aβ group ($$ P < 0.01 and $$$$ P < 0.0001 com-
pared with the Aβ group). &&&& P < 0.0001 and && P < 0.01 in comparison
with the control group. @@ P < 0.01 compared with the Aβ + vinpocetine
group. ^^^ P < 0.001 compared with the vinpocetine+Aβ group.
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vinpocetine was reported as potent as phenytoin to block voltage-gated
Na+ channels in rat cortical neurons [92]. On the other hand, vinpo-
cetine protects neuronal cells against glutamate toxicity and ROS pro-
duced by excitotoxic levels of extracellular glutamate [93–95]. Vinpo-
cetine inhibits lipid peroxidation in synaptosomes and is an effective
scavenger of hydroxyl radicals [73]. Evaluation of lipid peroxidation
and ROS formation has shown that vinpocetine is highly effective
against ascorbate/Fe2+-induced peroxidation in synaptosomes by in-
hibiting ROS formation and lipid peroxidation [23].

Vinpocetine has been described as a specific inhibitor of PDE1 [17],
which can lead to an increase in the cAMP and cGMP [96]. Intracellular
increase in cAMP/cGMP levels can establish a cascade that leads to the
activation of CREB, a transcription factor, and this activation eventually
can result in the expression of plasticity-related genes [97–99]. CREB
protein is an important molecule for learning and memory [100,101],
LTP [102,103], the expression of many neuroprotective and anti-
apoptotic molecules [104], protective neurotrophic factors, such as
BDNF, fibroblast growth factor (FGF), and transforming growth factor
(TGF) [105,106], the expression of BCL2 anti-apoptotic protein
[107,108], and the expression of the peroxisome proliferator-activated
receptor-gamma coactivator 1-alpha (PGC-1α), which acts as a ROS
sweeper [109]. In addition, PDE inhibitor can increase cAMP/cGMP
levels leading to the phosphorylation of AMPA receptors, which can
increase the conjunctions in the synapses and actually facilitate the
transmission of glutamatergic [110].

In brain diseases as well as neurodegenerative disorders, such as AD
neuronal plasticity is interrupted [111,112]. Therefore, as PDE1 in-
hibitors are appropriate plasticity boosters, they seem to be potential
therapeutic options. In this regard, vinpocetine treatment has been in-
dicated to facilitate LTP [19,20], boost the structural dynamics of
dendritic spines [113], recover memory retrieval [51], and elevate the
efficiency on cognitive tests in humans [114]. In addition, the vinpo-
cetine effect in inhibiting Na channel is possibly associated with its
neuroprotective and anticonvulsant function [27]. Vinpocetine, in a
selective manner, inhibits Ca-calmodulin-affiliated cGMP-phospho-
diesterase, therefore it can increase intracellular cGMP levels in the
vascular smooth muscle leading to the decreased resistance in cerebral
vessels and an increase in cerebral blood flow. This exclusivity is re-
sponsible for its neuroprotective activity, as well [24,115,116]. Vin-
pocetine can inhibit IκB kinase (IKK), prohibit IkB degradation, and the
result in translocation of NF-κB to the nucleus. This properties of vin-
pocetine along with its potential to expand neuronal plasticity indicate
that, it might be effective in pathologic conditions with inflammation
and negligible neuronal plasticity, such as AD and Parkinson’s disease
[117].

The present research had several limitations, which should be
considered in interpreting the results. For example, no valid natural
laboratory rodent model of AD is available. Therefore, AD models have
a number of limitations, including the fact that they do not recapitulate
the morphological and behavioral patterns observed in clinical human
AD. The AD model created in this study by ICV Aβ injection was done
based on previous studies. However, it was associated with some lim-
itations. The time spent to induce AD (30 days) in rats was one of the
most important of these restrictions, which was not long enough for the
development of neuronal loss or neural degeneration, a specific feature
in AD. On the other hand, AD has been associated with changes and
genetic disorders. In the model of AD induced by ICV injection of Aβ,
genetic differences in AD are ignored, which is a significant limitation
that should be considered in future studies.

5. Conclusion

In summary, in this research, we showed that the ICV injection of
Aβ induced considerable memory and learning deficiencies in the PAL
task, MWM, and NOR tests. Vinpocetine administration improved the
Aβ-induced memory impairment in all behavioral experiments i.e. PAL

task and MWM and NOR tests. Its neuroprotective, anti-inflammatory,
antioxidant, and especially, phosphodiesterase 1 inhibitory effects are
possibly associated with its effectiveness on memory impairment ob-
served in this study. The most considerable finding of the current re-
search was that vinpocetine pre-treatment and treatment had beneficial
effects in a rat model of AD, which can be used to prevent AD.
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