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Summary 

 Background & aims: The risk allele (G) of rs10830963 in the melatonin 

receptor 1 B (MTNR1B) gene presents an association with biochemical 

parameters and obesity.  We study the effect of this SNP on insulin resistance 

and weight loss secondary to two hypocaloric diets.  

Methods: 270 obese subjects were randomly allocated during 9 months 

(Diet HP: a high protein/low carbohydrate vs. Diet S: a standard severe 

hypocaloric diets)). Anthropometric parameters, fasting blood glucose, C-

reactive protein (CRP), insulin concentration, insulin resistance (HOMA-IR),  

lipid profile and adipocytokines levels  were measured.  Genotype of MTNR1B 

gene polymorphism (rs10830963) was evaluated.  

Results: All adiposity parameters, systolic blood pressure and leptin levels 

decreased in all subjects after both diets. This improvement of adiposity 

parameters was higher in non-G allele carriers than G allele carriers.  After 

weight loss with Diet HP, (CC vs. CG+GG at 9 months); total cholesterol (delta:-

9.9+2.4 mg/dl vs. -4.8+2.2 mg/dl:p<0.05), LDL-cholesterol (delta:-8.3+1.9 mg/dl 

vs. -5.1+2.2 mg/dl: p<0.05), insulin (delta:-4.7+0.8 UI/L vs. -0.9+1.0 UI/L: 

p<0.05), triglycerides (delta:-17.7+3.9 mg/dl vs. -6.1+2.8 mg/dl: p<0.05) and 

HOMA IR (delta:-0.8+0.2 units vs. -0.2+0.1 units: p<0.05) improved only in no G 

allele carriers. After weight loss with Diet S in non G allele carriers, insulin levels 

(delta  (CC vs. CG+GG): -3.4+0.6 UI/L vs. -1.2+0.4 UI/L: p<0.05), triglycerides 

(delta:-29.2+3.4 mg/dl vs. -8.2+3.8 mg/dl: p<0.05), HOMA-IR (delta  (CC vs. 

CG+GG): -1.1+0.2 units vs. -0.1+0.1 units: p<0.05), total cholesterol (delta:-

15.9+7.4 mg/dl vs. -5.8+2.9 mg/dl:ns) and  LDL-cholesterol (delta:-13.7+5.9 

mg/dl vs. -6.0+2.9 mg/dl: ns) decreased, too.  

Conclusions: our study detected a relationship of rs10830963 variant of 

MTNR1B gene with adiposity changes, cholesterol changes and insulin 

resistance modification induced by two different hypocaloric during 9 months. 
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INTRODUCTION 

It has been recognized that circadian system is involved in regulation of 

energy balance and body weight (1). In human beings, disruption of this 

circadian rhythm by means of social jet lag, shift work, and consumption of a 

high amount of fat along the day has and metabolic complications (type 2 

diabetes mellitus, glucose intolerance, hyperlipemia, hypertension or 

cardiovascular disease) (2-4). One of the most well-known chronobiotics is 

melatonin, a hormone produced by pineal gland that shows a main role in the 

control of these circadian rhythms (5).  

The action of melatonin is realized by two membrane receptors; 

melatonin receptor 1 (MT1, encoded by MTNR1A) and melatonin receptor 2 

(MT2, encoded by MTNR1B). MTNR1B is the ubiquitous receptor of both and it 

is located in diencephalon, pancreatic islets and retin tissue. Recent genome-

wide association studies have identified common variants in the MTNR1B gene 

(6). One of this SNPs (single nucleotide polymorphisms) (rs10830963) in the 

melatonin receptor type 1B (MTNR1B) gene, has been related with altered 

rhythm and signal of melatonin (7). Interestingly, this genetic variant has also 

been related to diabetes mellitus type 2 (8-9), lipoproteins (10-11) and weight 

(12).  Moreover, evidence has indicated that melatonin plays a key role in the 

regulation of adipose tissue (lipogenesis and lipolysis), the  participation un the 

browning process of withe adipose tissue, the activation of brown adipose 

tissue and the maintenance of an energy balance (13-14)  

Despite these above-mentioned relationships, investigations studying the 

effect of this polymorphism on response to weight loss strategies are scarce. 

Goni et al (15) reported that rs10830963 variant could be related with weight 

loss induced by a caloric restriction. The same authors (16) have detected a 

relationship of this genetic variant with lipid response after 2-year weight loss 

diet.  A significant interaction was detected between rs10830963 genotypes 

(17) and the dietary intervention with a hypocaloric diet based in Mediterranean 

style on body weight loss and insulin resistance, too. Therefore, we 

hypothesized that the MTNR1B genotype might influence changes in body 

weight and metabolic parameters in response to different hypocaloric strategies. 
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 In the present study, we evaluate the effect of this SNP on changes in 

body weight and insulin resistance in response to two different weight-loss diets 

(a high protein/low carbohydrate vs. a standard severe hypocaloric diets) during 

9 months.  

MATERIALS AND METHODS 

Subjects and procedure: 

 Two hundred and eighty one patients were randomly assigned to one of 

two energy-reduced diets during 9 months follow-up time (a high protein/low 

carbohydrate vs. a standard severe hypocaloric diets) by a consecutive method 

of sampling among subjects send from Primary Care Physicians.  This study 

was conducted according to the guidelines laid down in the Declaration of 

Helsinki, the local ethics committee approved all procedures involving patients 

and all subjects provided informed consent.   

Major exclusion criteria were the presence of  a dietary intervention 

during the 6 months prior to the study, unstable cardiovascular or 

cerebrovascular diseases, insufficient motivation  as well as the use of any of 

these drugs;  dipeptidyl type IV inhibitors drugs, thiazolidinedione, metformin,  

GLP-1 analogs, sGLT2 inhibitors, insulin, glucocorticoids, angiotensin receptor 

blockers, angiotensin converting enzyme inhibitors, psychoactive medications, 

statins and other lipid drugs. The inclusion criteria were the following; body 

mass index > 30 kg/m2 and an adult age ranged from 18 to 70 years.  

 Fasting blood samples (15 ml) were obtained at routine times in clinical 

settings at baseline, 3 months and 9 months. Levels of basal glucose, C-

reactive protein (CRP), insulin, insulin resistance as homeostasis model 

assessment (HOMA-IR), total cholesterol, LDL-cholesterol, HDL-cholesterol, 

plasma triglycerides concentration and serum adipokines (leptin, adiponectin 

and resistin) were analyzed  within the start of the trial and repeated after  3 and 

9 months of both hypocaloric diets. Anthropometric parameters (weight, height, 

waist circumference and fat mass by bioimpedance) and blood pressure were 

measured in the morning before breakfast.    Genotype of MTNR1B gene 

polymorphism (rs10830693) was evaluated. The results were analyzed for the 

combined CG and GG as a group and CC genotype as second group. 
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Dietary Intervention: 

 270 obese patients were randomly allocated to one of the next two diets. 

Diet HP (n=137) (severe hypocaloric diet, high protein-low carbohydrate) 

consisted in a diet of 1050 cal/day, 33% of fats (39.0 g/day), 33% of 

carbohydrates (86.1 g/day) and 34% of proteins (88.6 g/day). The distribution of 

fats was; 63.8% of monounsaturated fats, 23.5% of saturated fats, and 12.6% of 

polyunsaturated fats.  Diet S (n=133) (severe hypocaloric diet, standard protein) 

consisted in a diet of 1093 cal/day, 27% fats  (32.6 g), 53% carbohydrates 

(144.3 g/day), and 20% proteins (55.6 g/day). The distribution of fats was; 

67.4% of monounsaturated fats, 20.9% of saturated fats, and 11.6% of 

polyunsaturated fats. The exercise recommendations for patients of both groups 

were the completion of aerobic physical activities at least 3 times per week (60 

min each). The adherence of both diets was recorded each week with a phone 

call in order to improve both diets with a dietitian.  National composition food 

tables were used as reference (18). Records of daily dietary intake for three 

days at basal time and at 9 months’ time including a weekend day were 

evaluated with a computer-based data evaluation system (Dietosource ®, Gen, 

Sw). 

Measurements 

Body mass index was calculated as body weight in kilograms/(height 2 in 

meters). Waist circumference was measured in the narrowest diameter between 

xiphoid process and iliac crest. Electrical bioimpedance was used to measure 

body composition with an accuracy of 50 g (19).  Blood pressure was measured 

twice after a 10 minutes rest with a random zero mercury sphygmomanometer, 

and averaged (Omrom, LA,CA). 

Insulin was analized by radio-immunoanalysis (RIA Diagnostic 

Corporation, Los Angeles, CA) with a sensitivity of 0.5mUI/L (normal range 0.5-

30 mUI/L) (20), plasma glucose levels were determined by using an automated 

glucose oxidase method (Glucose analyser 2, Beckman Instruments, Fullerton, 

California) and the homeostasis model assessment for insulin resistance 

(HOMA-IR) was obtained using these values (21). Serum total cholesterol and 

triglyceride concentrations were determined by enzymatic colorimetric assay 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 7 

(Technicon Instruments, Ltd., New York, N.Y., USA).  HDL cholesterol was 

determined enzymatically in the supernatant after precipitation of other 

lipoproteins with dextran sulphate-magnesium. LDL cholesterol was calculated 

using Friedewald formula (LDL cholesterol= total cholesterol-HDL cholesterol-

triglycerides/5) (22).  

 CRP was determined by immunoturbimetry (Roche Diagnostics GmbH, 

Mannheim, Germany), with a CV% 2.8%. Adiponectin was measured by ELISA 

(R&D systems, Inc., Minneapolis, USA) (DRP300)  with a CV% 3.8% (23).  

Leptin was by Enzyme-Linked Immunosorbent Assay (ELISA) (Diagnostic 

Systems Laboratories, Inc., Texas, USA) with a CV% 3.5% (24). Resistin was 

measured by ELISA (Biovendor Laboratory, Inc., Brno, Czech Republic)  with a 

CV% 3.2% (25).  

Genotyping of MTNR1B gene polymorphism  

 Genomic DNA was extracted from the buffy coat fraction of centrifuged 

blood by using commercial kit extraction (Biorad, LA, CA). Primers were 

designed with the Sequenom Assay Design v4 (SEQUENOM, Inc.San Diego, 

California CA). Genotyping for the rs10830963 polymorphism was performed by 

polymerase chain reaction real time analysis. This polymerase chain reaction 

(PCR) was carried out with 20–25 ng of genomic DNA, 0.1–0.15 µl each of 

oligonucleotide primer for rs10830963 (primer forward: 5′- 

ACGTTGGATGCCCCCAGTGATGCTAAGAAT -3′ and reverse 5′- 

ACGTTGGATGGCATAGGCAGAATATTCCC -3′ in a 2-µl final volume 

(Termociclador Lifetecnologies, LA, CA). Hardy Weinberg equilibrium was 

calculated with a statistical test (Chi-square). The variant of MTNR1B gene was 

in Hardy Weinberg equilibrium (p=0.28). 

Statistical analysis: 

Sample size was calculated to detect differences over 2.5 kg in body 

weight loss with 90% power and 5% significance (n=140 in each group of diet). 

The statistical analysis were realized by intention to treat. Comparison of 

categorical variables were assessed by using chi-square test. Numerical 

variables with normal distribution were analyzed with a two-tailed Student’s t-

test. Non-parametric variables were analyzed with the Wilcoxon test. The 
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statistical analysis to evaluate the gene –diet interaction was an univariate ANCOVA 

with Bonferroni test post Hoc The statistical analysis was performed for the 

combined CG and GG as a group and CC genotype as second group, with a 

dominant model.  A p-value <0.05 was considered significant. SPSS version 

15.0 has been used to realize statistical analysis. 

RESULTS 

  Two hundred and eighty obese subjects were included in the study and 

270 followed up and finalized the survey (figure 1), only 10 patients were not 

included in the trial. The mean age was 49.4+6.2 years (range: 28-66), the 

mean body mass index 35.1+4.2 kg/m2 (range: 30.1-40.3) and the mean weight 

was 91.8+5.1 kg (range: 86.3-96.9). 143 patients (52.9%) had the genotype CC, 

105 patients CG (38.9%) and 22 patients GG (8.2%). Age was similar in the 

three-genotype groups (CC; 49.5+5.1 years vs CG; 48.8+7.2 years vs GG; 

49.2+6.3 years: ns).  

 In the group of (Diet HP) 137 obese patients (72 CC genotype and 65 G 

allele carriers), basal evaluation of nutritional intake with a 3 days written food 

record showed a calorie intake of 2018.7+236.1 kcal/day, a carbohydrate intake 

of 200.2+28.3 g/day (43.4 % of calories), a fat intake of 62.0+9.2 g/day (33.7% 

of calories) and a protein intake of 77.3+12.1 g/day (23.9% of calories). During 

the dietary intervention, these patients reached the right recommendations of 

the diet HP; 1023.9 cal/day, 32.5% of fats (38.6 g/day), 33.5% of carbohydrates 

(87.9 g/day) and 34.5% of proteins (89.6 g/day).  

 In the group of (Diet S) 133 subjects (71 CC genotype and 62 G allele 

carriers), basal evaluation of nutritional intake with a 3 days written food record 

showed a calorie intake of 2017.4+493.0 kcal/day, a carbohydrate intake of 

208.2+48.9 g/day (43.1% of calories), a fat intake of 82.9+28.3 g/day (36.5% of 

calories) and a protein intake of 88.3+32.2 g/day (20.4% of calories). During the 

intervention, these subjects reached the recommendations of diet S; 1028.7 

cal/day, 27.2% fats (37.9 g), 52.9% carbohydrates (144.2 g/day), and 19.9% 

proteins (55.5 g/day).  

  Table 1 shows anthropometric parameters and blood pressure 

characteristics of participants at baseline and at months 3 and 9 of intervention.  
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In both genotype groups, adiposity parameters and systolic blood pressure 

decreased.  After weight loss with a severe hypocaloric diet, high protein-low 

carbohydrate (Diet HP; CC vs. CG+GG at 9 months); BMI (delta:-3.3+0.2 kg/m2 

vs. -3.1+0.2 kg/m2:p=0.02), weight (delta:-8.6+1.1 kg vs. -6.2+0.9 kg: p=0.01), 

fat mass (delta:-6.2+1.8 kg vs. -3.7+1.2 kg: p=0.01) and waist circumference 

(delta:-11.7+2.1 cm vs. -6.7+1.9 cm: p=0.02) decreased. The improvement of 

these variables was higher in non-G allele carriers. After weight loss with a 

standard protein severe hypocaloric diet, (Diet S; CC vs. CG+GG al 9 months), 

BMI (delta:-3.1+0.2 kg/m2 vs. -2.7+0.3 kg/m2:p=0.04), weight (delta:-7.6+1.4 kg 

vs. -5.1+1.2 kg: p=0.03), fat mass (delta:-6.3+1.2 kg vs. -4.2+1.1 kg: p=0.03) 

and waist circumference (delta:-10.7+1.4 cm vs. -6.3+1.8 cm: p=0.01) 

decreased, too. This improvement of anthropometric parameters was higher in 

non-G allele carriers. Systolic blood pressure improved after both hypocaloric 

diets independently of the genotype (table 1). 

 Table 2 reports biochemical variables. After weight loss with Diet HP, ( 

CC vs. CG+GG at 9 months); total cholesterol (delta:-9.9+2.4 mg/dl vs. -4.8+2.2 

mg/dl:p=0.01), LDL-cholesterol (delta:-8.3+0.9 mg/dl vs. -10.1+0.2 mg/dl: p=0-

01), insulin (delta:-4.7+0.8 UI/L vs. -0.9+1.0 UI/L: p=0.03), triglycerides (delta:-

17.7+3.9 mg/dl vs. -6.1+2.8 mg/dl: p=0.04) and HOMA IR (delta:-0.8+0.2 units 

vs. -0.2+0.1 units: p=0.03) improved only in no G allele carriers. After weight 

loss with Diet S, in the group of subjects without G allele, insulin levels (delta  

(CC vs. CG+GG): -3.4+0.6 UI/L vs. -1.2+0.4 UI/L: p=0.02), triglycerides (delta:-

29.2+3.4 mg/dl vs. -8.2+3.8 mg/dl: p=0.03), HOMA-IR (delta  (CC vs. CG+GG): 

-1.1+0.2 units vs. -0.1+0.1 units: p=0.01), total cholesterol (delta:-15.9+7.4 

mg/dl vs. -5.8+2.9 mg/dl:ns) and  LDL-cholesterol (delta:-13.7+5.9 mg/dl vs. -

6.0+2.9 mg/dl: ns) decreased, too. 

 Table 3 reports changes of serum adipokines. After weight loss with diet 

HP, both genotype groups showed a significant decrease on leptin levels (CC 

vs. CG+GG at 9 months) (delta: -22.1+7.1: ng/ml vs. -22.2+9.2 ng/ml:ns).   After 

dietary intervention with Diet S, both genotypes showed a significant decrease 

on leptin levels (delta: -24.9+8.1: ng/ml vs. -26.2+8.8 ng/ml:ns).  The effect on 

leptin levels were independently of dietary intervention. Resistin and 

adiponectin levels remained unchanged after both diets and in both genotypes.  
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DISCUSSION 

 In this randomized dietary intervention trial of 9 months, we detect a 

relationship among the rs10830963 variant of MTNR1B gene and changes of 

adiposity parameters, lipid profile and insulin resistance. Our data show that the 

G allele was associated with a worse weight loss, lipid and insulin resistance 

improvements secondary to both hypocaloric diets. 

   Otherwise, the common genetic SNP rs10830963 of MTNR1B has been 

associated with obesity and fasting glucose levels in different cross sectional 

studies (26-27). Moreover, there are few studies evaluating the relationship 

between a dietary intervention and a genetic variant located in MTNR1B (15- 

17).   Our findings of adiposity parameters analysis suggested that the MTNR1B 

variant (rs10830963) may affect total body weight and fat mass response, even 

specific fat composition as waist circumference (trunk fat). According to our 

results, a previous study found an association between other genetic variant of 

MTNR1B (rs4753425) and total body fat (28). Goni et al (29) have reported that 

the rs10830963 was related with body composition changes after 6 months with 

two hypocaloric diets (low-fat diet vs high fat diet), although this gene-diet 

interaction became less significant at 24 months of follow-up. A recent study 

reported that this common genetic variant was associated with the timing of the 

melatonin rhythm (30). G allele carriers  showed a later melatonin offset and 

longer duration of elevated melatonin levels. The authors proposed that the 

disruption of melatonin rhythm among carriers of the risk allele might produce 

an increase of food intake. Other hypothesis, it is possible that rs10830963  

may be involved in the regulation of MTNR1B gene expression or other gene 

expression that might influence the role of melatonin on energy storage. 

 The second finding of our study is the relationship of this genetic variant 

with the modification of cholesterol levels after both diets. The circadian system, 
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melatonin is one of the chronobiotics, has a main role in coordinating lipid 

metabolic pathways through activation or repression of genes imply in 

metabolism (31-32). On the other hand, it has been observed that melatonin 

administration can decrease lipid levels in both human and animal studies (33). 

In a recent study, administration of melatonin decreased LDL cholesterol in 

obese subjects (32) and in type 2 diabetic patients poorly controlled with 

metformin (34), too.  In our design, we observed a relationship between the 

rs10830963 variant of MTNR1B gene and LDL-cholesterol response after 

weight loss with both hypocaloric diets. Given that melatonin appears to be 

involved in various lipid phenotypes, it can be speculated that the effect of 

MTNR1B genetic variant on dynamics of melatonin expression thereby could 

influence cholesterol levels. For example, Tuomi et al (35) reported that 

rs10830963 variant might affect MTNR1B mRNA expression in other cell types 

related to cholesterol metabolism. Finally Goni et al (16) have showed that G 

allele was associated with lower decrease in total cholesterol and LDL 

cholesterol in response to a high-fat diet and opposite effect was found in a low-

fat diet.  A meta-analysis has reported significant interactions between MTNR1B 

genotype and fat intake on cholesterol levels (36), too These results are in line 

with the “differential susceptibility hypothesis”, which proposes that risk alleles 

may function like plasticity genes because genetic risk could be modified by 

environmental factors including nutrients (37).  

 The third important finding of our study is that G allele carriers showed 

less improvement of insulin and HOMA-IR after weight loss than non-G allele 

carriers independently of the type of diet. The mechanisms by which the 

MTNR1B rs10830963 affects insulin resistance remains unknown.  It could be 

speculated that the effect of the MTNR1B genetic variant on dynamics of 

melatonin expression thereby could influence glucose metabolism The effect of 

feeding on the rhythmic mRNA expression of clock genes (38) or circadian 
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rhythmic balance (39) have also been reported in animals.  Grotenfeld et al 

(40) have reported the relationship of this genetic variant with glucose 

metabolism. This investigation showed that among females at risk for 

gestational diabetes mellitus, non-G allele carriers seem to benefit from lifestyle 

intervention. In other studies, the risk G allele has been related with decreased 

insulin secretion in response to glucose (41) and decreased insulin sensitivity 

(42), too. An in vitro study (43) observed that the G-allele of rs10830963 that 

leads to increase glucose level was associated with reduced pancreatic cell 

function (HOMA-B). Sparso et al (44) reported that G-allele carriers had 

reduced suppression of hepatic glucose production during a hyperinsulinemic-

euglycemic clamp indicating hepatic insulin resistance.  

 Our study has limitations. Firstly, we only analysed one SNP of MTNR1B 

gene, so other genetic variants in this or other genes could be related with our 

observations. Secondly, we did not measure circulating melatonin levels in the 

study population, which prevented the potential analysis of the relationship 

between serum melatonin levels and the genetic variant. Finally, it is difficult to 

evaluate which macronutrient played the main role of the detected effect of both 

diets on metabolic parameters and gene-diet interaction.  

 In summary, our design showed the association of rs10830963 MTNR1B 

polymorphism with body weight loss induced by two different hypocaloric diet 

and provided additional evidence on metabolic response such as cholesterol, 

insulin resistance and fasting insulin levels.  
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TABLE 1: CHANGES IN ANTHROPOMETRIC PARAMETERS rs10830963 (mean+S.D) 

Characteristics    DIET HP (n=137)           DIET S (n=133) 

   CC (n=72)            CG+ GG  (n=65)       CC (n=71)        CG+ GG (n=62)   

  0 time     At 3 mths            At 9 mths    0 time        At 3 mths      At 9 mths   0 time     At 3 mths     At 9 mths   0 time       At 3 mths          At 9 mths    

BMI  35.35.1     33.24.1
*               

 32.04.0
*      

35.15.0 
     

33.44.0
*          

32.05.0
*
   35.25.0     33.64.1

*          
32.15.0 

*
  35.14.0

        
33.54.1

*        
      32.44.0

* 

Weight (kg) 92.67.3     86.87.2
*            

   84.09.1
*  

89.310.4
 
 
  
85.08.1

*      
83.18.2

*
  92.110.6    87.68.1

*
     84.57.2

*
  90.912.3 

      
87.611.2

*  
       85.9.1

*
 

Fat mass (kg) 36.43.0     32.64.0
*
           30.25.0

*  
34.44.1 

      
32.15.1

*     
30.77.1

*                 
36.35.0     32.84.0

*         
30.0.1

*
  

       
37.67.0

            
34.47.1

*
  

             
32.46.1

* 

WC (cm)   114.1+9.0  107.1+5.2
*
         102.4+6.1

* 
  109.9+7.1  

 
106.2+5.1

*   
103.1+7.0

* 
         112.4+8.1   108.3+7.0

*    
101.7+8.2

*
     111.2+9.0  

       
106.7+7.1

*
    104.9+8.0

* 

SBP (mmHg) 126.2+8.1  123.4+6.2
*
       123.0+6.0

* 
    127.0+9.2 124.2+7.0

*
   123.1+8.2

*
    125.1+9.1   121.5+8.1

*     
121.0+8.1

* 
     129.0+8.0

         
126.2+7.1

*
        124.6+7.0

*
 

DBP (mmHg) 81.1+8.0     79.9+7.1         77.2+9.1    80.1+9.0       79.9+8.1       78.9+7.1         80.2+9.0       78.2+4.5      78.4+5.0    80.2+5.0         79.8+4.0            79.2+4.3 

      

HP: high protein/low carbohydrate. S: standard. DBP: Diastolic blood pressure. Mths: Months BMI: body mass index. SBP: Systolic blood pressure. DBP: Diastolic blood pressure WC: Waist 

circumference. (*) p<0.05, in each genotype group with basal values. No differences   between genotypes groups.  . 
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TABLE 2: BIOCHEMICAL PARAMETERS (mean+S.D) 

Characteristics    DIET HP (n=137)           DIET S (n=133) 

   GG(n=72)            GG+ GT  (n=65)       GG (n=71)        GG+ GT (n=62)   

  0 time     At 3 mths            At 9 mths   0 time        At 3 mths      At 9 mths    0 time     At 3 mths     At 9 mths   0 time       At 3 mths          At 9 mths    

   

Glucose (mg/dl)  104.58.1    102.2+8.0        99.47.0
 
       102.9+8.2       101.98.3       100.6+5.1 99.78.1   99.8+7.0        97.28.1      101.7+9.1     98.76.5        98.3+7.1 

Total ch. (mg/dl) 207.59.0  201.3+8.1
*
       197.79.7

*
    210.2+22.0     205.111.0

 
 204.4+9.1 215.311.9 202.1+6.4

*
   193.310.4

*
     208.5+10.2   203.59.9   203.8+10.9 

LDL-ch. (mg/dl)   130.39.1  124.7+8.1
*           

122.09.3
*
   130.4+13.2     125.911.1

 
  125.1+13.1

 
127.110.5 117.3+10.2

*
    114.811.0

*
     123.1+10.1    119.5.2  117.6+9.1

 

HDL-ch. (mg/dl)   54.89.0      54.6+8.0          53.97.0          55.6+8.1         54.39.1           53.8+7.1 55.89.2    53.2+9.1         52.19.0        55.0+7.3      54.18.9       55.2+8.0 

TG (mg/dl)   122.811.1  106.3+9.4
*
    105.19.2

*
     126.9+12.8     123.113.2

 
   120.9+20.3 138.112.6  119.4+10.1

*
   109.110.1

*
      116.1+11.3    110.3.3 108.9+21.9 

Insulin (mUI/L)   11.75.0       9.5+3.0
*             

7.04.1
*
          11.2+7.1          9.65.1

 
    9.3+7.4 11.24.1       8.8+4.1*           7.83.0*       10.6+5.0         9.94.2  9.4+3.1

 

HOMA-IR   2.60.9       2.5+0.5
              

1.8+0.8
* 

           2.2+1.2             2.01.1
 

    2.0+1.4 2.51.1       2.2+1.0* 
                

1.51.0*       2.1+1.0          2.3.1  2.1+1.2
 

CRP (mg/dl) 5.13.0        4.9+2.8          4.83.2             5.3+3.1             5.23.0            5.1+3.3     4.12.1       4.3+3.1             4.84.0       5.0+4.1           5.13.8  5.0+3.1 

HP: high protein/low carbohydrate. S: standard. Ch: Cholesterol. TG: Triglycerides CRP: c reactive protein. HOMA-IR: Homeostasis model assessment.  LDL: low density lipoprotein,. HDL: High 

density lipoprotein. Mths: months (*) p<0.05, in each group with basal values. No statistical differences among genotypes in each diet or in different diet groups.. 
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TABLE 3: CIRCULATING ADYPOCITOKINES (mean+S.D) 

 

Characteristics    DIET HP (n=137)           DIET S (n=133) 

   GG(n=72)            GG+ GT  (n=65)       GG (n=71)        GG+ GT (n=62)   

   0 time     At 3 mths            At 9 mths   0 time        At 3 mths      At 9 mths   0 time     At 3 mths     At 9 mths   0 time       At 3 mths          At 9 mths  

Adiponectin (ng/ml) 10.03.9    11.62.8
          

12.13.2   10.94.1      12.03.1  13.84.3 11.24.3     12.93.1     13.14.2  10.85.0        11.24.2   12.45.0 

Resistin (ng/ml)  6.0+2.0    6.1+2.1          6.0+4.1    6.1+3.2       6.0+3.3   6.0+3.1 6.1+2.1    6.2+3.0         5.8+2.9 5.9+3.5       5.6+4.1   5.2+4.1 

Leptin (ng/ml)  34.111.1  12.99.3
*         

12.05.1
*
  35.18.0 

    
13.84.1

*
 12.95.3

* 
36.99.0  15.16.2

*      
12.02.1 

*
 38.15.9     17.14.2

* 
  12.34.1

*
 

.(*) p<0.05, in each group with basal values. No statistical differences among genotypes in each diet or in different diet groups.  

 

Journal Pre-proof



Jo
urnal P

re-proof

 22 

 

 

 

 

 

Highlights 

 

 All adiposity parameters, systolic blood pressure and leptin levels decreased in all subjects after both diets (Diet HP: a high 

protein/low carbohydrate vs. Diet S: a standard severe hypocaloric diets). 

 This improvement of adiposity parameters was higher in non-G allele carriers than G allele carriers.  

 After weight loss with Diet HP, total cholesterol, LDL-cholesterol, insulin, triglycerides and HOMA IR improved only in no G 

allele carriers.  

 After weight loss with Diet S in non G allele carriers, insulin levels, triglycerides, HOMA-IR, total cholesterol and  LDL-

cholesterol  decreased.  
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