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Abstract
Calanus oil (COil) is a natural product extracted from marine zooplankton Calanus finmarchicus found in the North Atlantic
Ocean. This oil is rich in wax esters of polyunsaturated fatty acids (PUFAs) and has been projected as the best alternative to fish
oil because its production cannot keep pace with the demands from the growing markets. The COil is the only commercially
available marine source of wax esters, whereas classicω-3 PUFAs comes from triglycerides, ethyl esters, and phospholipids. It
has, in recent decades, been seen that there is an unprecedented rise in the use of PUFA-rich oil in the aquaculture industry. A
simultaneous rise in the demand of PUFAs is also observed in the health care industry, where PUFAs are suggested preventing
various disorders related to lifestyles such as obesity, diabetes mellitus, chronic low-grade inflammation, atherosclerosis, and
brain and cardiovascular disorders (CVDs). In this review, we will explore the metabolic aspects related to the use of COil as an
antioxidant, anticholesterinemic, and anti-inflammatory dietary source and its impact on the prevention and therapy of obesity-
related metabolic disorders.
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Introduction

The health benefits of the consumption of seafood and marine
lipids have a long time been known (Pedersen 2016). Marine
animals are a great source for lipid-rich oil, with marine fishes
being a common source for nutrient-rich oil till recently
(Albert et al. 2016; Linder et al. 2010). The lipid-rich oil from
fishes is commonly used in aquaculture, and the demand for
lipid-rich oil is continuously increasing due to a thriving aqua-
culture industry across the globe (Abdelhamid et al. 2018).

The use of fish oil in aquaculture as a feed source is very com-
mon as it contains a very high quantity of health-promotingω-3
long-chain polyunsaturated fatty acids (φ-3 LC-PUFAs)
(Turchini et al. 2010). However, fish oil production cannot keep
up with the growing needs, which causes the necessity of search
for promising natural materials, rich in lipids, containing ω-3
LC-PUFAs. Scientists investigate currently, as an alternative to
fish oils, oil-seed plants and zooplankton to produce n-3 LC-
PUFAs (Lee et al. 2019; Shanaida 2019; Venegas-Caleron et al.
2010). The ratio of ω-6/ω-3 essential fatty acids in natural oil-
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rich products is very important for the development of the human
body (Simopoulos 2002). Besides their claimed potential in
preventing metabolic syndrome,ω-3 PUFAs have been recently
associated with cancer prevention (Aucoin et al. 2017; Fabian
et al. 2015; Nabavi et al. 2015). There are very few reports about
Calanus genus-derived PUFAs in the prevention of tumors, yet
the current hypothesis is thatω3-PUFAsmay be able to enhance
the activity of chemopreventive drugs against cancer (Abel et al.
2014; D'Archivio et al. 2018). Probably, the fundamental key
able to enable PUFAs in acting against tumors has to be retrieved
in the PUFAs ability in counteracting inflammation (Marion-
Letellier et al. 2015). A huge deal of literature reports,
encompassing several cohorts from numerous countries andwith
different demographic features, cannot provide sound evidence
to suggest a significant relationship betweenω-3 fatty acids and
cancer incidence, data are grossly scanted. According to most of
these research studies, it appears that diet supplementation with
ω-3 fatty acids is unlikely to prevent cancer fully. Despite this,
many reviews, surveys, and experimental investigations on
in vitro cell cultures and animals would suggest a significant
preventive effect ofω3-PUFAs in counteracting carcinogenesis,
particularly in some solid tumors such as breast, prostate, colon,
and pancreas cancers.

Some authors reported yet that daily intake of ω3-PUFAs
and an optimal ω3/ω6 PUFAs ration might ameliorate the
prevention of chronic and inflammatory disease, particularly
involving cardiovascular disease and cancer (Simopoulos
2008), although no optimal ratio was forward so far (Wang
et al. 2004).

The positive effects on conditions like thrombosis, athero-
sclerosis, hypertriglyceridemia, hypertension, and autoim-
mune diseases were generally related to the long-chain
PUFAs, although some controversial data were recently re-
ported (Akbar et al. 2017; Das 2000; Ergas et al. 2002;
Hande et al. 2019; Johnsen et al. 2018). FAO/WHO recom-
mended the dietary panels for sufficientω-3 fatty acids intake
(FAO/WHO 2003).

Some authors have also suggested that the ability of ω3-
PUFAs in dampening the risk of cancer is fundamentally due
to their anti-inflammatory potential and inhibition of cell
growth factors (Weylandt et al. 2015).

Briefly speaking, data relating cancer prevention and
ω3 PUFAs intake are too scanty to fully elucidate the
causative association between benefit and cancer reduc-
tion for diet-derived PUFAs, and therefore further insights
are needed.

Although the consumption of these fatty acids is strongly
advised, the daily intake is generally far below the suggested
quantities (Calder 2015). Various dietary supplements, con-
taining high amounts of PUFAs, are available on the market,
such as cod liver oils, whole fish body oils, and plant products.
Table 1 summarizes some of the very recent clinical outcomes
of the use of ω3-PUFAs in the human dietary intake.

The future growth of the fish industry is highly dependent
on the sustained and adequate supply of fish oil. Continuous
extraction of fish oil from marine fishes is unsustainable due
to an ever-increasing demand for these oil-rich fishes in the
human diet. Research has shown that oils rich inω-3 PUFAs,
such as eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids, reduce the risk of cardiovascular disorders. Beneficial
effects of these oils have also been seen in weight manage-
ment, treatment of dyslipidemia, hypertension, diabetes
mellitus, chronic low-grade inflammation, and atherosclerosis
(Crandell 2016; Garcia-Esquinas et al. 2019; Minihane et al.
2015; Turchini 2013; Turchini et al. 2010).

Zooplankton, such as copepods and krill, are the most nu-
merous primary consumers of plankton in the marine environ-
ment (Grieve et al. 2017; Van Dinh et al. 2019). The copepod
Calanus finmarchicus is spread in large amounts in the North
Atlantic and has lipid-rich stages that can be harvested sus-
tainably. Its oil can be used as a health-promoting nutraceuti-
cal. Recent publications indicate that oil from C. finmarchicus
may have beneficial health effects (Höper et al. 2014; Tande
et al. 2016).

These data present an opportunity to find out new sources of
PUFA-rich oil from the marine ecosystem. In recent times,
C. finmarchicus, a member of small crustaceans, has been pre-
sented as an alternative to marine fishes because of the pres-
ence of PUFA-rich oil in this zooplankton. C. finmarchicus
acts as a critical link between the phytoplankton and other
marine organisms present at the higher trophic levels in a ma-
rine food web. It is predominantly found in the North Atlantic
Ocean and contains a very high quantity of long-chain ω-3
EPA and DHA (Pedersen et al. 2014). The oil extracted from
C. finmarchicus is viscous owing to the presence of fatty acids
in the wax ester form that comprises 80–90% of the oil com-
position. It has been observed that 20–30% fatty acids in these
wax esters are long-chain fatty acids with a small number of
phytosterols, antioxidants, glycerol, and free fatty acids
(Pedersen et al. 2014; Salma et al. 2016). The consumption
of ~ 250–500 mg EPA plus DHA per day lower the relative
risk of mortality from coronary heart disease, and higher doses
do not substantially further lower the risk (Mozaffarian and
Rimm 2006). It was proved the ability of diet to positively
modulate inflammation and associated health claims
(Minihane et al. 2015).

The present review aims to summarize various health-
promoting benefits of the COil extracted from C. finmarchicus.

Some insights on copepods’ derived COil

C. finmarchicus, as a source of COil, is a widespread small
marine crustacean constituting the major fraction of the zoo-
plankton biomass presented in the North Atlantic Ocean
(Pedersen 2016). It is a relatively small herbivorous
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crustacean, which is about 3–4 mm in size and has a life span
of 1 year in boreal waters (Fig. 1).

All zooplanktons require lipids for reproduction, energy
storage, and diapause. While triglycerides are an important
lipid storage molecule in terrestrial organisms, wax esters are
the primary lipid storage entity in the marine zooplankton
living in the cold polar areas. While triglycerides fulfill the
short-term energy needs of these zooplanktons, wax esters
serve as a long-term energy source for these small organisms.

Wax esters are significant principles of the marine food
chain since zooplankton is considered an important element
of marine food webs (Cook et al. 2016; Höper et al. 2014; Lee
et al. 1970).

Several methods can be applied to obtain oil from marine
biomass, e.g., wet or dry rendering, hydrolysis, silage produc-
tion, supercritical fluid extraction, and solvent extraction
(Pedersen et al. 2014). Among these techniques, the wet ren-
dering is applied in the most widely global manufacturing of
fish and calanus oils (Bimbo 2012). The major technological
stages comprise boiling, pressing, separation of the liquid
phase with a further recovery of the oil, and drying of the
residual protein matter. Boiling provides denaturation of the

proteins and conditions for the extraction of the lipids by
pressing method. The refining stage often occurs to make
the edible fixed oil (Bimbo 2012).

The major active principles in the oil extracted from
C. finmarchicus are exemplified by monoesters of LC-PUFA
and fatty alcohols, namely wax esters. The calanus oil is also
rich by the deep red carotenoid astaxanthin (ASX), which
exhibits antioxidant effects (Davinelli et al. 2018; Zuluaga
et al. 2018). The fatty acid residues of its wax esters contain

Fig. 1 Microphotograph of Calanus finmarchicus (Cameron Thompson,
the University of Maine for courtesy)

Table 1 Some very recent effects reported about ω3-PUFAs activity on human pathology

Source Protocol Actions References

Marineω3-PUFAs Double-blind RCT ↓ Cardiometabolic risk in 108 Chinese
hypertensive subjects

Yang et al.
(2019)

Marineω3-PUFAs,
selenium, vitamins,
calcium

multicenter 2 × 2 factorial
randomized clinical

None Did not reduce depression and mood disorders
in 1025 Caucasian patients

Bot et al.
(2019)

Fish oil RCT None Did not reduce liver fat in 50 overweight men Parker et al.
(2019)

Fish oil Double-blinded RCT ↑ Amelioration in the offspring growth and their BMI
from 736 pregnant women

Vinding
et al.
(2018)

COilω3-PUFAs Observational study None Eczema Tande et al.
(2016)

Marine and COil
ω3-PUFAs

Multicenter RCT ↓ Aromatase inhibitors-induced arthralgia in 249 subjects
with breast cancer

Shen et al.
(2018)

Marine and COil
ω3-PUFAs

RCT ↓ Liver steatosis in NAFLD from 20 patients Spahis et al.
(2018)

Infusion of 0.2 g/kg
ω3-PUFAs

RCT ↑ Faster postoperative recovery in patients undergoing
on-pump CABG in 57 patients.

Feguri et al.
(2019)

Marine and COil
ω3-PUFAs

RCT ↑ Cognitive decline in 50 subjects Bowman
et al.
(2019)

Marine and COil
ω3-PUFAs

RCT ↑ Improvement of inflammation, insulin resistance, glucose and lipid
metabolism in 200 patients with impaired glucose regulation

Wang et al.
(2019)

Marine and COil
ω3-PUFAs

RCT ↓ Headaches and migraine in 74 subjects Abdolahi
et al.
(2019)

Marine and COil
ω3-PUFAs

RCT ↑ Survival in stage III colon cancer Song et al.
(2019)
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high amounts of stearidonic acid (SDA), EPA and DHA, and
also of monounsaturated fatty acids (Walker et al. 2013).

The structure of the characteristic wax ester of
C. finmarchicus lipids, comprising fatty alcohol docosenol
(22:1n-11) and PUFA, is shown in Fig. 2.

Substantial evidence shows that consumption and in-
creased blood levels of the very LC ω-3 PUFAs (EPA,
DHA, andα-linolenic acid) are associated with health benefits
(Walker et al. 2013).

Triacylglycerols containing mainly the ω-3 fatty acids
(Fig. 3) might reach up to 8.9% and phospholipids up to
10.3% of total lipids in COil (Pedersen et al. 2014).

Triglyceride esters of EPA and DHA are common in such
animal dietary products, fish oil, and COil (Horrocks and Yeo
1999; Nakamura et al. 2014). DHA has an important impact
on the growth and development of the infant’s brain. The
intake of DHA enhances learning skills, whereas its deficien-
cy may lead to learning disability (Bazan 2005; Echeverria
et al. 2017; Lo Van et al. 2016).

DHA and EPA have a positive effect on diseases such as
hypertension, arthritis, atherosclerosis, and depression. Also,
DHA is needed in adults to maintain a normal function of the
brain (Cook et al. 2016; Rechenberg andHumphries 2013; Smith
et al. 2018; van der Burg et al. 2019; Zehr and Walker 2018).

The intense red color of COil is due to high carotenoid
astaxanthin content (Pedersen 2016). In zooplankton, ASX is
the most commonly occurring carotenoid and may contribute
to as much as 85–90% of the total pigment (Ambati et al.
2014; Davinelli et al. 2018). Copepods use β-carotene, ob-
tained from phytoplankton, as a precursor for ASX synthesis
(Andersson et al. 2003). The specific structure of the ASX
molecule provides its ability to be esterified, higher

antioxidative capacity, and a more polar configuration than
other carotenoids (Guerin et al. 2003).

Thus, COil is the only commercially available marine
source of wax esters, whereas classicω-3s come as triglycer-
ides, ethyl esters, and phospholipids. The wax esters in COil
are slowly but completely digested and absorbed in the distal
intestine, which permits interaction with GPR120 receptors
(Im 2018; Karakula-Juchnowicz et al. 2017; Moniri 2016).
The receptor interaction causes metabolic effects as well as
reduction of the liver—and intra-abdominal—fat deposition
and provides insulin sensitivity. Digestion of wax esters re-
leases the unsaturated fatty acids in the colon and activates the
GPR120 receptors in immune cells that secrete hormones,
which controls the sugar and fat metabolism (O’Connell
et al. 2017).

Of importance to be mentioned here is that the oil content of
C. finmarchicus is regulated by the growth stage, location, and
seasonal variations (Pedersen et al. 2014). The wax ester con-
tent is highest (88%) in C. finmarchicus during late autumn
when the organism undergoes the feeding cycle and lowest
(85% of the total lipids) during the winter season when the
lipids are used as an energy source in gonad production
(Kvile et al. 2016). Recent studies have reported that stage IV
and stage Vare the best developmental stages to extract the oil
from C. finmarchicus as, during these stages, the lipids consti-
tute as much as 60% of the total dry bodyweight of the organ-
ism (Bailey et al. 2012; Pedersen et al. 2014). The composition
of wax esters varies between Calanus species (Graeve and
Kattner 1992; Pedersen et al. 2014). For example, lipids of
C. hyperboreus are predominantly di-unsaturated long-chain
wax esters while the lipids of C. finmarchicus are rich in mono-
unsaturated short-chain wax esters (Graeve and Kattner 1992).

B

A

C

Fig. 2 Structural formulas of
docosenol (1) and the PUFA (a
stearidonic acid; b
eicosapentaenoic acid; с
docosahexaenoic acid) as a wax
ester component of COil
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The use of standardized proteolytic enzymes may improve
the yield of COil extraction from C. finmarchicus. In one
study, their content was higher in comparison with traditional
technologies employed in fish oil extraction (Vang et al.
2013).

One more advantage of using small zooplanktons for the
extraction of lipid-rich oil is the lower levels of persistent
organic pollutants in these organisms. It is well-known that
the concentration of persistent organic pollutants increases
with higher trophic levels due to the phenomenon of
biomagnification (Alava and Gobas 2012). The short life cy-
cle of C. finmarchicus also contributes to the low degree of
contamination by organic admixtures.

Since zooplanktons represent the lower trophic levels in a
food chain, the concentration of these contaminants is signif-
icantly lower in the extracted oil comparatively to the cod
feeding the various small fishes. Hence, the zooplanktons’
oil does not require refining/purification steps to remove the
contaminants (AMAP 2002; Pedersen et al. 2014). A majority
of fatty alcohols in C. finmarchicus are monounsaturated with
20:1ω-9 and 22:1ω-11 constitutes up to 82% of the total fatty
alcohols. In contrast, saturated alcohols constitute only 8–24%
of the total fatty alcohols (Pedersen et al. 2014).

The COil in weight loss and metabolic
syndrome

Obesity is a complex lipid metabolic disorder and represents
currently one of the most serious global health issues since it
has a negative impact on various systems in the human body.
Overweight and obesity are of significant importance consid-
ering their global epidemic prevalence (over 300 million
obese persons) and relatedness with type 2 diabetes, heart
disease, osteoarthritis, certain forms of cancer, and some other
ailments (Abdali et al. 2015; Patra et al. 2015).

The accumulation of visceral and subcutaneous fat is one
of the distinguishing features of obesity that contributes to the
development of cardiometabolic disorders. It has been as-
sumed that various mechanisms, including disturbances in
lipid metabolism and insulin resistance, activation of inflam-
matory mediators, endothelial dysfunction, and adipokine

imbalance, are contributed to the development of both obesity
and atherosclerosis (Lovren et al. 2015).

Obesity leads to an augmentation of excess calories in
visceral fat and the allocation of high quantities of free
fatty acids in different parts of the human body and can
result in type 2 diabetes. Leptin, adiponectin, and cyto-
kines altogether contribute to oxidative stress and low-
grade inflammation, which occur in obesity (Abdali et al.
2015; Ellulu et al. 2017).

Dietary COil and administration of exenatide counteracted
obesity-induced derangements of myocardial metabolism.
COil also protected the heart from ischemia, which could have
implications for the prevention of obesity-related cardiac dis-
ease (Jansen and Larsen 2017; Rashed et al. 2016).

Due to the potentially dangerous adverse effects of obesity,
the necessity for natural products of animal and plant origin to
combat obesity is being explored, that might be used as an
alternative strategy for development of effective and safe med-
icines for the treatment of metabolic conditions related to obe-
sity and hypercholesterolemia (Patra et al. 2015; Shanaida
2019).

One of the major reasons for obesity is a sedentary lifestyle
characterized by lower physical activity and higher intake of
energy-dense foods thus creating a scenario of positive energy
balance in the body (Hruby and Hu 2015; Wang et al. 2008).
According to one estimate, the prevalence of obesity may
reach 85% by 2030 in the US population (Wang et al. 2008).
Obesity, especially visceral obesity, has been shown to induce
chronic low-grade inflammation in the body attributed to in-
creased secretion of potent pro-inflammatory cytokines from
macrophage and other cells of the immune system (Ellulu
et al. 2017). The persistent low-grade inflammation is a major
contributing factor in the onset and subsequent progression of
insulin resistance, CVDs, and other metabolic disorders
(Ellulu et al. 2017).

It has been established that dietary intake of useful fatty
acids can change the inflammatory milieu in the body and
dietary ratio of ω-6 (n-6) to ω-3 (n-3) can potentially deter-
mine the susceptibility of an individual for various disorders
where inflammation plays a contributing role (Raphael and
Sordillo 2013). The ω-6 PUFAs have been shown to exacer-
bate the inflammation, whileω-3 PUFAs tend to reduce body
inflammation (Simopoulos 2006).

Fig. 3 The structural formula of
carotenoid astaxanthin

Appl Microbiol Biotechnol



The COil is a rich source of long-chainω-3 fatty acids, EPA
and DHA, and can be used as a potential nutraceutical supple-
ment to reduce obesity and other metabolic disorders. In a re-
cent study, oil from C. finmarchicus showed anti-obesity prop-
erties in diet-induced obese mouse model C57BL/6J. It was
observed that feeding mice with a supplement containing 2%
C. finmarchicuswax esters for 11weeks reducedweight gain in
high-fat diet-fed C57BL/6J mice. Dietary supplementation with
a low quantity of COil (2%) was able to prevent the excessive
dependence of fatty acid oxidation for energy production in
cases of obesity in mice (Pedersen et al. 2014). The wax esters
of COil were hydrolyzed, and the generated free fatty acids
were absorbed by both the liver and adipose tissue as reflected
by the changed fatty acid composition of lipids analyzed from
the liver and adipose tissue.

Moreover, the liver also generated long-chain ω-3 fatty
acids from the C18 ω-3 fatty acids presented in the feed
(Pedersen et al. 2014). In another study, C57BL/6J mice fed
high-fat diet showed body weight gain, fat deposition in the
abdominal region, and disrobed glucosemetabolism in compar-
ison with normal chow-fed diet. However, supplementing a
high-fat diet (HFD) with 1.5% COil successfully reduced body
weight and improved glucose metabolism (Hoper et al. 2013).
It also prevented fat accumulation and hepatic steatosis, thus
helped in improving liver health. Treatment with COil reduced
the overall size of adipocytes, increased the expression levels of
anti-inflammatory cytokine adiponectin, and reduced the ex-
pression of the potent inflammatory cytokines TNF-α and IL-
6 (Hoper et al. 2013). This indicates that COil offers both pre-
ventive and therapeutic advantages in fighting obesity and other
related disorders (Hoper et al. 2013).

Other research has shown that supplementation with wax
esters was more effective in managing obesity-induced in-
flammation and glucose intolerance in comparison with pure
EPA +DHA ethyl esters (E/D) supplementation. This indicat-
ed that the beneficial effects of COil are not attributed to only
EPA and DHA content, and the other smaller components of
wax esters are also responsible for the observed health benefits
of COil (Höper et al. 2014).

It was reported that COil treatment significantly reduced
the levels of blood glucose, plasma insulin, plasma non-
esterified fatty acid, and improved glucose tolerance in com-
parison with a high-fat diet and pure EPA and DHA treated
groups (Höper et al. 2014). The above-cited studies have dem-
onstrated that COil can be used as a nutraceutical supplement
in weight management therapies owing to its anti-obesity and
anti-inflammatory properties.

COil and insulin resistance

Obesity and type 2 diabetes are significantly related to in-
creased inflammation. Metabolic syndrome is caused by an

increased inflammation of the adipose tissue with possible
further systemic inflammation and type 2 diabetes. Among
promising trends for the abolishment of both conditions, the
administration of anti-inflammatory nutrition is proposed
(Sears 2009).

It has been observed that wax esters present in COil under-
go slower digestion, therefore, later reaching to the distal in-
testine. However, other ω-3-fatty acids do not reach distal
intestinal parts due to a faster absorption rate (Höper et al.
2014). The G protein coupled receptor GPR120 is present in
several cell types and body organs. It is suggested as a poten-
tial target for the management of disorders associated with
low-grade inflammation; it inhibits the cellular inflammation
due to its inhibitory effects of the NF-kB pathway (Karakula-
Juchnowicz et al. 2017). GPR120 is also expressed in the large
intestine, and studies have shown that it mediates the benefi-
cial effects of fish oil rich in ω-3 fatty acids (Buettner 2010;
Karakula-Juchnowicz et al. 2017). Studies have suggested that
PUFA present in COil acts via GPR120, leading to a lowering
in systemic inflammation and improved insulin activity
(Pedersen 2019). Also, COil treatment reduced the size of
adipocytes and therefore prevented hypoxic condition often
observed in large size adipocytes (Pedersen 2019). It has been
demonstrated that hypoxic conditions in adipocytes attract
macrophages and create an inflammatory milieu leading to
insulin resistance as well as abnormal glucose metabolism
(Fujisaka et al. 2013). A close association between inflamma-
tion and insulin resistance has been well established. A higher
inflammatory milieu adversely affects both the secretion of
insulin from pancreatic β-cells and downstream signaling
pathways in the cell by inhibiting the tyrosine phosphorylation
of IRS-1 (Rehman and Akash 2016). Both these mechanisms
lead to abnormal insulin secretion and function, consequently
leading to disturbed glucose homeostasis (Rehman and Akash
2016). It is evident from the above-cited studies that COil
prevents the secretion of pro-inflammatory cytokines and their
action.

Anti-inflammatory properties of COil

Cytokines and other mediators, firstly lipids, participate in the
processes for discontinuation of inflammation, not simply as
disabling pro-inflammatory pathways (Hotamisligil 2006;
Serhan et al. 2008). COil has been shown to possess potent
anti-inflammatory properties due to the presence ofω-3-fatty
acids and antioxidant molecules such as ASX. The ω-3 fatty
acids of the COil act as a precursor molecule for the synthesis
of anti-inflammatory eicosanoids (Pedersen 2019).
Eicosanoids are oxylipins and control the host immune re-
sponses by interacting with various cellular receptors
(Noverr et al. 2003). ASX present in COil is a powerful
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antioxidant molecule due to the presence of two oxygenated
groups on each ring structure (Salma et al. 2016).

C. finmarchicus reduces macrophage infiltration and
downregulates pro-inflammatory gene expression, including
interleukin-6, monocyte chemoattractant protein-1, and tumor
necrosis factor-α, whereas it upregulates the expression of
adiponectin (Höper et al. 2014). Low-grade chronic inflam-
mation plays an important pathological role in many chronic
age-related conditions. Unresolved inflammatory responses
may be involved in the early stages of disease development
(Calder 2015).

SDA, another useful component of COil, reduces the syn-
thesis of pro-inflammatory mediators synthesized from ω-6
fatty acids. Studies have reported that the anti-inflammatory
effects of SDA are also mediated by its inhibition of the NF-
kB pathway in macrophages (Sung et al. 2017). Furthermore,
COil provides wax esters, which have been shown to reduce
adipose tissue inflammation by inhibiting adipose tissue hyp-
oxia and synthesis of inflammatory mediators (Pedersen 2019).

Moreover, the presence of ASX also prevents the oxidation
of COil, thus obviates the need to add extra antioxidants to it.
ASX possesses potent anti-inflammatory properties due to its
inhibitory effects on cyclooxygenase-2 and inducible nitric
oxide (Pedersen 2019). ASX also inhibited the expression of
several inflammatory cytokines such as TNF-α, IL-6, and IL-
1β (Davinelli et al. 2018). Thus, the anti-inflammatory prop-
erties of COil have been attributed to the presence ofω-3 fatty
acids, SDA, and carotenoid ASX.

The COil in the prevention of atherosclerosis,
cardiovascular and brain disorders

Various biochemical processes in the cell produce reactive
oxygen and nitrogen species. The formation of these free rad-
icals is unavoidable, and their role as a mediator in several
biochemical pathways has been well documented (Abdali
et al. 2015; Pham-Huy et al. 2008; Salvayre et al. 2016;
Yang et al. 2016).

Under general conditions, the free radicals generated have
been trapped/neutralized by the antioxidant machinery of the
cell that involved vitamins A, C, E, and numerous enzymes of
the antioxidant pathways.

However, excessive production of free radicals can poten-
tially damage the cellular membranes, especially lipids (de
Araújo et al. 2016). This oxidative stress is an important con-
tributing factor in the development of several lifestyle-related
disorders such as obesity, cardiovascular diseases, insulin re-
sistance, chronic inflammation, and aging (Pham-Huy et al.
2008). For example, oxidation of LDL-cholesterol by free
radicals is an important step in the development and subse-
quent progression of atherosclerosis (Eilertsen et al. 2012;
Salvayre et al. 2016). Angiotensin II infusion is a commonly

used model to induce hypertension and understand the mech-
anism behind the induction of hypertension (Lohmeier 2012).

Dietary supplementation with an oil extracted from the
zooplankton copepod C. finmarchicus decreased the choles-
terol level in apoE-deficient (apoE(−/−)) mice and mіght be
recommended as an effective and safe food supplement to
diminish the atherosclerosis plaque formation (Eilertsen
et al. 2012). Long-chain monounsaturated and n-3 polyunsat-
urated fatty acids decline the after-dinner lipid level in the
blood and liver of rats (Halvorsen et al. 1995).

In a mice model of Ang II infusion, body weight and
weights of various organs declined. It was observed that sup-
plementation with COil successfully ameliorated the adverse
effects of Ang II infusion in mice model (Salma et al. 2016).
The COil supplementation also prevented the rise in blood
pressure attributed to Ang II infusion. The other detrimental
effects of Ang II infusion, cardiac hypertrophy, and fibrosis in
the cardiac muscles were also prevented in the COil treated
group. Moreover, the inflammatory response and fibrosis ob-
served in the aorta were completely prevented in COil-treated
group indicating a complete reversal of Ang II-induced cardi-
ac abnormalities in mice model of hypertension (Salma et al.
2016). In another study, the O-GlcNAcylation of proteins in-
duced by Ang II treatment was reduced in COil-treated group
(Salma et al. 2016). Taken together, the COil treatment was
successful in preventing cardiac tissue inflammation and oxi-
dative stress, thus acted as a cardioprotective health supple-
ment. In another study, COil supplementation has been shown
to protect against obesity and obesity-associated myocardial
abnormalities. The COil treatment increased the glucose oxi-
dation and showed an improved post-ischemic functional re-
covery in comparison with non-treated obese mice. The study
concluded that COil treatment successfully preventedmyocar-
dial health abnormalities induced by obesity (Jansen and
Larsen 2017). Dietary supplementation of COil also amelio-
rated atherosclerosis in apoE−/− mice, as evidenced by re-
duced aorta atherogenesis and aortic lesions (Eilertsen et al.
2012). It was observed that supplementation with EPA +DHA
was less effective in preventing atherosclerosis in comparison
with COil treatment indicating that molecules other than EPA
and DHA also played an important role in preventing
atherosclerosis-induced damage (Eilertsen et al. 2012).

Additionally, COil supplementation also reduced the expres-
sion of several pro-inflammatory genes, such as ICAM, CCl2,
andNF-kB, in the liver, indicating an anti-inflammatory action in
the liver (Eilertsen et al. 2012). However, COil supplementation
did not change the plasma concentrations of various biochemical
parameters such as cholesterol, glucose, and TG in the present
study (Eilertsen et al. 2012). In mice fed with HFD treated with
COil and exenatide, a reduced intra-abdominal fat deposition
was found than in HFD mice, which were not administered the
supplementation (Jansen et al. 2019). The study concluded that
COil was successful in preventing atherosclerosis and can be
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used as a dietary supplement to prevent the chances of cardio-
vascular disorders (Eilertsen et al. 2012).

The cost of the brain and mental disorders has been rising
sharply and, in some countries, currently exceeds the budget
of other ailments, including cardiovascular or metabolic dis-
eases (Cole et al. 2005; Kidd 2007). In recent years, cognitive
decline, especially in Alzheimer’s patients, has become an
important challenge for health care systems since it affects
the quality of older people’s lives and the socio-economic
environment of patients and their families. Prevalence of var-
ious mood ailments, including depression, schizophrenia,
Huntington’s disease, rapidly increases simultaneously as the
life expectancy does.

The brain tropism of ω3-PUFAs can be highlighted by
showing the ability of these compounds to even preventing
neurodegenerative disorders. Many systematic reviews, sur-
veys, Cochrane reviews, and meta-analyses confirmed the ben-
eficial action of ω-3 dietary supplementation on many brain
functions, cognitive activity, and prevention of dementia in
the elderly and mature adults, including in Alzheimer’s disease
and other cognitive disorders (Dangour et al. 2010; Jiao et al.
2014; Mazereeuw et al. 2012; Yurko-Mauro et al. 2015).
However, in general, many reports did not assess a clear asso-
ciation between ω3. PUFAs intake and the prevention of cog-
nitive impairments in healthy adults and Alzheimer’s disease
affected subjects. People with mild cognitive deficits may im-
prove their condition with ω3-PUFA nutritional supplementa-
tion, as shown by their amelioration in attention, immediate
recall, and processing speed (Mazereeuw et al. 2012). A
meta-analysis performed in 2016 with 26 different studies re-
ported a 17% lower risk of depression with increasing fish
intake (Li et al. 2016). Yet, a Cochrane review in 2015 with
26 studies reported insufficient evidence to assess whether ω-
3s (1000–6600 mg/day EPA, DHA, and/or other ω-3 PUFAs)
were beneficial for major depressive disorder in recruited adults
(Appleton et al. 2015). In this case, it had not found effects on
depressive symptoms that were small-to-modest beneficial.
However, the researchers concluded that the effect was not
clinically significant. Finally, another systematic review and
meta-analysis of ten studies of ADHD children or related
neurodevelopmental disorders, such as developmental coordi-
nation disorder, found no factual improvement by introducing
ω-3-PUFAs in the diet on behavioral measures such as aggres-
sion, emotional lability, conduct problems, and oppositional
behavior (Cooper et al. 2016).

Notwithstanding, in subgroup analyses of the simple
higher-quality studies, including those with stringent inclusion
criteria,ω-3 PUFAs supplementation (60 to 1296mg/day EPA
and/or DHA) improved significantly parent-rated emotional
lability and oppositional behavior. Many of these findings need
to be confirmed from more additional clinical trials.

Diet, as one of lifestyle modifiable factors, may contribute to
the prevention or enhancement of chronic neurodegenerative

processes. Theω-3 fatty acid DHA, which is of marine origin,
is a significant nutrient for optimal functioning of the central
nervous system (CNS) (Cole et al. 2005; Valenzuela and
Valenzuela 2013). CNS tissues contain high quantities of the
following PUFA: arachidonic acid (20:4,ω-6) and DHA. The
concentration of both acids can be regulated by dietary con-
sumption. DHA is of great importance for brain phospholipids,
which count 25% of the total fatty acids of the gray matter.

Dosage and use modalities

The use of COil has been suggested as an alternative to EPA
and DHA due to a highly rich source of wax esters (Tande
et al. 2016). A study by Tande et al. (2016) evaluated the
clinical safety of COil in a randomized, double-blind,
placebo-controlled clinical trial. The study was conducted
for 1 year, and capsules of 2 g COil were given to the 64
participants. A placebo group acted as a control for the study.
Several biochemical and hematological parameters were mon-
itored to understand if long-term supplementation of COil has
any adverse reactions (Tande et al. 2016). It was concluded
that COil supplementation did not have any adverse effects on
the body, as reflected by normal biochemical and hematolog-
ical parameters of the participants (Tande et al. 2016).
However, COil-supplemented groups displayed a slight in-
crease in the incidence of eczema, which was minor and could
be due to other factors (Tande et al. 2016). In another study, 18
subjects were given COil capsules to evaluate the bioavailabil-
ity of EPA and DHA from wax esters present in COil. It was
observed that plasma levels of EPA increased significantly in
COil-given group in comparison with EPA ethyl ester-given
group. This indicated that ω-3-fatty acids available in COil
are bioavailable, and it can be used as a potential source for
EPA and DHA (Cook et al. 2016). It has been reported that
wax esters are not efficiently digested by terrestrial organisms
due to the absence of specific lipases required to digest com-
plex wax esters. For example, fishes and birds efficiently di-
gest wax esters due to evolutionary adaptations developed by
them. In contrast, dogs and rats incorporate the free fatty acids
released after wax ester digestion with only 25% and 50%
efficiency (Place 1992).

Conclusions

TheCOil is extracted frommarine zooplanktonC. finmarchicus
found in the North Atlantic Ocean. COil extracted from
C. finmarchicus is rich in wax esters, carotenoid and has been
projected as the best alternative to fish oil. The presence ofω3-
PUFAs makes COil particularly suited for generating lipid sig-
naling to tune metabolism and the adipose tissue/muscle rela-
tionship. Figure 4 summarizes this fundamental task exerted by
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PUFAs. The beneficial activity of PUFAs might be highlighted
as major signaling molecules, particularly with conjugated
linoleic acids (CLA), of the role exerted by adipose tissue in
metabolic, immune, and tissue homeostasis.

Recent decades have seen an unprecedented rise in the use
of PUFA-rich oil in the aquaculture industry. A simultaneous
rise in the demand of PUFAs is also observed in the health
care industry, where PUFAs are suggested preventing various
disorders related to lifestyles such as obesity, diabetes
mellitus, chronic low-grade inflammation, atherosclerosis,
and brain and cardiovascular disorders (CVDs). Apart from
PUFAs, COil is also a rich source of antioxidants, such as
ASX and SDA. Several studies have demonstrated that COil
supplementation can be a very effective dietary intervention to
manage body weight, reduce the chances of cardiovascular
disorders, heal the damaged arteries due to atherosclerosis,
and to prevent the oxidative damage caused by free radicals.

However, further scientific research is warranted in under-
standing the molecular mechanism that contributes to the ben-
eficial effects of COil. The demand for COil is rising, and
highly efficient technologies to recover the COil from the
zooplankton are required to improve the yield and recovery

of the oil. The use of small zooplanktons in the extraction of
lipid-rich oil has gained momentum, and small crustaceans
like C. finmarchicus have been suggested as one of the best
sources to obtain PUFA-rich oils. Thus, COil appears to be a
promising new area of research that may lead to new insights
into the health benefits of its different components.
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Fig. 4 Polyunsaturated fatty acids
(PUFAs) from the diet are impor-
tant regulators of the muscular
activity and adipocyte biology.
They participate in the active
tuning signaling, mediated by re-
active oxygen species (ROS) and
lipids, in supporting the major
role of the adipose tissue to
maintain tissue homeostasis and
tissue immunity. Low ROS levels
from fibroblasts, activated by
linoleic acid, induce fatty acid
desaturase (FADS1) in adipocytes
and their cycle regulation via
conjugated linoleic acid isomers
(CLAs), which leads to adipocyte
turnover. High ROS levels can
induce NADPH oxidase 4 in adi-
pocytes (NOX4) and activate
dedifferentiating genes such as
Notch, which leads to changes in
tissue homeostasis and the onset
of tissue stability. In this mecha-
nism, PUFAs are major actors of
the complex energy modulation
and the maintenance of organ and
tissue renewal
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